

All rights reserved – Copyright © 2016-2019 Cloud Signature Consortium VZW

 Standard

Architectures and protocols for
remote signature applications

Published version 1.0.4.0 (2019-06)

2 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

Contents
Foreword ... 4

Revision history ... 4

Acknowledgements ... 4

Introduction .. 5

Intellectual Property Rights .. 5

Trademark notice ... 5

Essential Patents .. 5

Legal notices .. 6

1 Scope ... 7

2 Interpretation of Requirement Levels ... 7

3 References ... 8

3.1 Normative references ... 8

3.2 Informative references.. 9

4 Terms, definitions and abbreviations .. 9

4.1 Terms and definitions ... 9

4.2 Abbreviations...10

5 Conventions ..11

5.1 Text conventions ..11

5.2 Base-64 ..11

6 Architectures and use cases ..11

6.1 Supported architectures ..11

7 Introduction to the remote service protocols API ..12

7.1 Format and syntax of the API ...12

7.2 Remote service base URI ..13

7.3 Integrity and confidentiality ...13

7.4 Remote service information ...14

7.5 clientData parameter ...14

8 Authentication and authorization ..14

8.1 Service authorization and authentication ...14

8.2 Credential authorization ..15

8.3 OAuth 2.0 Authorization ..16

8.3.1 Restricted access to authorization servers ...17

8.3.2 oauth2/authorize (OAuth 2.0 Authorization Code) ..20

8.3.3 oauth2/token (OAuth 2.0 Token Endpoint)..24

3 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

8.3.4 oauth2/revoke (OAuth 2.0 Revocation Endpoint) ..29

9 Creating a remote signature ..32

10 Error handling ...32

10.1 Error messages ..33

11 The remote service APIs ..34

11.1 info ..35

11.2 auth/login ..37

11.3 auth/revoke ...40

11.4 credentials/list ...42

11.5 credentials/info ...44

11.6 credentials/authorize ...49

11.7 credentials/extendTransaction ...52

11.8 credentials/sendOTP ..54

11.9 signatures/signHash ...56

11.10 signatures/timestamp ..59

12 JSON schema and OpenAPI description ...61

13 Interaction among elements and components ..62

13.1 Remote signing service authorization using Basic Authentication ...62

13.2 Remote signing service authorization using OAuth2 with Authorization Code flow.......................63

13.3 Create a remote signature with a credential protected by a PIN ...64

13.4 Create a remote signature with a credential protected by an “online” OTP (based on SMS)64

13.5 Create a remote signature with a credential protected by OAuth2 with Authorization Code flow.65

13.6 Create a remote signature with a credential protected by implicit authorization66

13.7 Create multiple remote signatures from a list of hash values ...67

13.8 Create a remote multi-signatures transaction with a PDF document ..68

4 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

Foreword
This document is a work by members of the Cloud Signature Consortium, a nonprofit association founded
by industry and academic organizations for building upon existing knowledge of solutions, architectures
and protocols for Cloud-based Digital Signatures, also defined as “remote” Electronic Signatures.

The Cloud Signature Consortium has developed the present specification to make these solutions
interoperable and suitable for uniform adoption in the global market, in particular – but not exclusively – to
meet the requirements of the European Union's Regulation 910/2014 on Electronic Identification and Trust
Services (eIDAS) [i.1], which formally took effect on 1 July 2016.

Revision history
Version Date Version change details

0.1.7.9-PR 14/02/2017 Public Pre-Release for early implementations

1.0.2.4-PR 24/09/2018 V1 Pre-Release for public comments

1.0.3.0 13/12/2018 V1 Public Release

1.0.4.0 28/06/2019 V1 Updated with new IPR information and errata

Acknowledgements
This work is the result of the contributions of several individuals from the Technical Working Group of the
Cloud Signature Consortium and some additional contributors. In particular, the following people have
provided a significant contribution to the drawing up and revision of the present specification:

Ałła Stoliarowa-Myć, Andrea Röck, Andrea Valle, Andreas Vollmert, Arno Fiedler, Bernd Wild, Carlos Ares,
Cornelia Enke, David Ruana, Davide Barelli, Enrico Entschew, Francesco Barcellini, Franck Leroy, Giuliana
Marzola, Giuseppe Damiano, Harald Bratko, Håvard Grindheim, Iñigo Barreira, Jon Ølnes, Kapil Khattar, Dr.
Kim Nguyen, Klaus-Dieter Wirth, Luca Boldrin, Luigi Rizzo, Mangesh Bhandarkar, Marc Kaufman, Marcin
Szulga, Meena Muralidharan, Michael Traut, Patrycja Wiktorczyk, Patryk Sosiński, Peter Lipp, Prof. Reinhard
Posch, Thomas Pielczyk, Torsten Lodderstedt.

5 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

Introduction
For a long time, transactional e-services have been designed for typical end-user devices such as desktop
computers and laptops. Accordingly, existing digital signature solutions are tailored to the characteristics of
these devices as well. This applies to smart card and USB token-based solutions. These traditional signature
solutions implicitly assume that the user accesses e-services from a desktop or laptop computer and in
addition uses a smart card or token to create any required digital signatures. This assumption is not valid
any longer. During the past few years, smartphones, tablets and other mobile end-user devices have
started to replace desktop and laptops computers.

This situation raises several challenges for e-services: smart cards and tokens cannot be easily connected to
smartphones and other mobile devices, or cannot at all. For instance, smartphones usually do not provide
support for USB devices, which is the common technology for smart card based solutions.

In this regard, recent regulations in various regions worldwide – like eIDAS [i.1] in the European Union –
have introduced the concept of electronic signatures that are created using a “remote signature creation
device”, which means that the signature device is not anymore a personal device under the physical control
of the user, but rather it is replaced by cloud-based services offered and managed by a trusted service
provider.

This is, in summary, the scope of the Cloud Signature Consortium, also known as CSC, aiming at the
definition of a common architecture, building blocks and communication protocols intended for creating a
standard API to integrate the essential components of a remote signature solution established among
different service providers and consumers.

Where the context of the eIDAS Regulation is applicable, this specification, and the term “remote signature
solution” herein developed, aim to cover solutions for remote electronic signatures and remote electronic
seals, in the domains of both qualified and advanced electronic signatures / seals.

Intellectual Property Rights
The Intellectual Property Rights Policy (IPR Policy) of the Cloud Signature Consortium is available at
https://cloudsignatureconsortium.org/ipr/

Trademark notice
The Cloud Signature Consortium logo is a Registered Trademark of the Cloud Signature Consortium:
EU Trademark number 015579048.

Essential Patents
IPRs essential or potentially essential to the present document may have been declared to the Cloud
Signature Consortium. The information pertaining to these essential IPRs, if any, is available on request
from the Cloud Signature Consortium secretariat at info@cloudsignatureconsortium.com .

No investigation, including IPR searches, has been carried out by the Cloud Signature Consortium. No
guarantee can be given as to the existence of other IPRs not referenced in the present document which are,
or may be, or may become, essential to the present document.

https://cloudsignatureconsortium.org/ipr/
mailto:info@cloudsignatureconsortium.com

6 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

Legal notices
The Cloud Signature Consortium seeks to promote and encourage broad and open industry adoption of its
standard.

The present document does not create legal rights and does not imply that intellectual property rights are
transferred to the recipient or other third parties. The adoption of the specification contained herein does
not constitute any rights of affiliation or membership to the Cloud Signature Consortium VZW.

This document is provided “as is” and the Cloud Signature Consortium, its members and the individual
contributors, are not responsible for any errors or omissions.

The Trademark and Logo of the Cloud Signature Consortium are registered, and their use is reserved to the
members of the Cloud Signature Consortium VZW. Questions and comments on this document can be sent
to info@cloudsignatureconsortium.org .

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License
(CC BY-SA 4.0). To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/
or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

mailto:info@cloudsignatureconsortium.org
http://creativecommons.org/licenses/by-sa/4.0/

7 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

1 Scope
When digital signatures are created within a device, the interfaces and functions are standardized, e.g. the
API used by the application program to access the signature creation libraries and the interface to the
smart card or similar device (if a device is used) holding the signing key. When digital signatures move to
the cloud, the functions needed to create a digital signature can be distributed across several service
instances, each carrying out one or more steps in the signature creation process. The interfaces between
such services are however until now not standardized.

The Cloud Signature Consortium aims to fill this gap in standardization by defining the architectural design,
communication protocols, application programming interfaces, data structures, and technical requirements
needed to establish interoperable solutions for cloud-based digital signatures. While these specifications
are applicable in a wide variety of use cases with different security requirements, the fulfilment of
requirements imposed by the eIDAS Regulation of the EU [i.1] is particularly addressed, supporting the
creation of “advanced” or “qualified” electronic signatures and electronic seals in the cloud.

This document contains technical specifications that are intended for use by applications for creating digital
signatures in the cloud and by a variety of applications consuming these services. By implementing their
services according to these specifications, service providers can ensure that services are applicable as parts
of complete digital signature systems in the cloud in a plug and play manner.

Existing standards and open specifications are considered by the consortium as far as applicable.

The following are out of scope of this specification:

 Policy requirements for (qualified and other) service providers; this is an area of standardization
covered by ETSI.

 Signing key creation and enrollment; although keys MAY be created by the remote service during the
signing workflow, these activities are not covered by specific API methods.

 Signature and certificate formats; use of the standards specified by ETSI is RECOMMENDED.
 Signature validation; this will be addressed in future specifications from the Consortium.
 Security evaluation and requirements for hardware components used to hold signing keys (HSM –

hardware security module); this is being standardized by CEN in Europe and FIPS in the USA.
 Internal functionality and internal interfaces in service provider systems.

Note that the current specifications mainly cover architectures where the signing key is held “in the cloud”,
i.e. by a signature creation device managed by a service provider. Architectures where the signing key is in
the hand of the signer, stored in the user’s device or in an attached smart card or similar, are not covered
as a particular case. The consortium will consider the need for further specifications covering situations
where a user device holding the signing key interacts with cloud services for digital signature creation, e.g.
cloud services MAY be used for document storage, hash computation, and signature formatting.

2 Interpretation of Requirement Levels
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC
2119 [1].

8 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

3 References

3.1 Normative references
The following documents, in whole or in part, are normatively referenced in this specification and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments or errata) applies.

[1] IETF RFC 2119: "Key words for use in RFCs to Indicate Requirement Levels".

[2] IETF RFC 3161: "Internet X.509 Public Key Infrastructure Time-Stamp Protocol (TSP)".

[3] IETF RFC 3986: "Uniform Resource Identifier (URI): Generic Syntax".

[4] IETF RFC 4514: "Lightweight Directory Access Protocol (LDAP): String Representation of
Distinguished Names".

[5] IETF RFC 4627: "The application/json Media Type for JavaScript Object Notation (JSON)".

[6] IETF RFC 4648: "The Base16, Base32, and Base64 Data Encodings".

[7] IETF RFC 5246: "The Transport Layer Security (TLS) Protocol Version 1.2".

[8] IETF RFC 5280: "Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile".

[9] IETF RFC 5646: "Tags for Identifying Languages".

[10] IETF RFC 5816: "ESSCertIDv2 Update for RFC 3161".

[11] IETF RFC 6749: "The OAuth 2.0 Authorization Framework".

[12] IETF RFC 6750: "The OAuth 2.0 Authorization Framework: Bearer Token Usage".

[13] IETF RFC 7009: "OAuth 2.0 Token Revocation".

[14] IETF RFC 7235: "Hypertext Transfer Protocol (HTTP/1.1): Authentication".

[15] IETF RFC 7518: "JSON Web Algorithms (JWA)".

[16] IETF RFC 7519: "JSON Web Token (JWT)".

[17] IETF RFC 7521: "Assertion Framework for OAuth 2.0 Client Authentication and Authorization
Grants"

[18] IETF RFC 8017: "PKCS #1: RSA Cryptography Specifications Version 2.2".

[19] IETF RFC 8446: "The Transport Layer Security (TLS) Protocol Version 1.3".

[20] IETF draft-ietf-oauth-security-topics-10: "OAuth 2.0 Security Best Current Practice"

[21] ETSI TS 119 312: "Electronic Signatures and Infrastructures (ESI); Cryptographic Suites".

[22] ISO 3166-1: " Codes for the representation of names of countries and their subdivisions —
Part 1: Country codes".

9 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

3.2 Informative references
The following documents, in whole or in part, are informatively referenced in this specification and may be
a useful contribution for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments or errata) applies.

[i.1] Regulation (EU) No 910/2014 of the European Parliament and of the Council of 23 July 2014 on
electronic identification and trust services for electronic transactions in the internal market
and repealing Directive 1999/93/EC.

[i.2] ETSI SR 019 020: "The framework for standardization of signatures; Standards for AdES digital
signatures in mobile and distributed environment".

[i.3] IETF RFC 3447: "Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications
Version 2.1".

[i.4] IETF RFC 6101: "The Secure Sockets Layer (SSL) Protocol Version 3.0".

[i.5] CEN EN 419 241-1: "Trustworthy Systems Supporting Server Signing - Part 1: General System
Security Requirements"

[i.6] ISO/IEC 19790: "Information technology - Security techniques - Security requirements for
cryptographic modules"

[i.7] Hickman, Kipp, "The SSL Protocol", Netscape Communications Corp., Feb 9, 1995

4 Terms, definitions and abbreviations

4.1 Terms and definitions
For the purposes of this specification, the following terms and definitions apply.

access token: credentials used to access protected resources. It’s a string representing an authorization
issued to the client. The string is usually opaque to the client.

NOTE 1: As defined in IETF RFC 6749 [11].

authentication factor: piece of information and/or process used to authenticate or verify the identity of an
entity.

NOTE 2: As defined in ISO/IEC 19790 [i.6].

EXAMPLE: A password or PIN.

authorization server: The server issuing access tokens to the client after successfully authenticating the
resource owner and obtaining authorization.

NOTE 3: As defined in IETF RFC 6749 [11].

credential: cryptographic object and related data used to support remote digital signatures over the
Internet. Consists of the combination of a public/private key pair (also named “signing key” in CEN EN 419
241-1 [i.5]) and a X.509 public key certificate managed by a remote signing service provider on behalf of a
user.

remote service: service implementing the API described in this specification and delivered on the Internet.

10 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

remote signing service provider: service provider managing a set of credentials on behalf of multiple users
and allowing them to create a remote signature with a stored credential.

NOTE 4: A remote signing service provider typically operates an HSM (or functionally equivalent
multi-user secure device) and an authentication service. It manages the users and provides
a signing service that can be accessed over the Internet by means of the API described in
this specification.

NOTE 5: A remote signing service typically manages signing keys and certificates that are created
before the signing operations take place. A common scenario is also when the signing key
and the certificate are created in the course of a signing operation (also called “ad-hoc” or
“on-the-go” credentials). It is possible to operate ad-hoc credentials with this specification
by creating the signing key and the certificate just before accessing them. Methods to
create ad-hoc credentials during the authorization or the signature operations will be
handled in a future release of this specification.

remote signature creation device: signature creation device used remotely from signer perspective to
provide control of signing operation on its behalf of the signer.

signature activation data: set of data used to control a given signature operation, performed by a
cryptographic module, on behalf of the signer.

signature activation module: configured software that uses the SAD in order that the signing keys are used
under sole control of the signer.

NOTE 6: As defined in CEN EN 419 241-1 [i.5].

signature application: client application or service calling the remote signing service provider to create a
remote signature.

signature application provider: service provider managing a signature application and offering it as a
service over the Internet or other communication channel.

4.2 Abbreviations
API: application programming interface

HSM: hardware security module

RSCD: remote signature creation device

RSSP: remote signing service provider

SAD: signature activation data

SAM: signature activation module

SCAL1: sole control assurance level 1

NOTE 1: As defined in CEN EN 419 241-1 [i.5].

SCAL2: sole control assurance level 2

NOTE 2: As defined in CEN EN 419 241-1 [i.5].

11 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

5 Conventions

5.1 Text conventions
This specification adopts the following text conventions to help identify various types of information.

Table 1 – Text conventions

Text convention Example
The vertical bar (|) indicates a possible value for
selection or outcome and SHALL be interpreted as
“or”.

YES | NO

Text in colored boxes is example code. POST /csc/v1/credentials/info HTTP/1.1

Bold text indicates the name of an API method. credentials/list
Italic text indicates the name of an API input or
output parameter. access_token

In general, API names as well as API input or output parameters defined in this specification use the
“camelCase” notation, like authType or credentials/extendTransaction. However, names and parameters
that are defined in other standards, like those in the domain of authentication and related to OAuth 2.0,
are used here in their original format to facilitate understanding and interoperability, using “snake_case”,
like refresh_token e.g. two names separated by an underscore.

5.2 Base-64
When data is required to be Base64-encoded, it SHALL be encoded as “base64” as defined in RFC 4648 [6].
To avoid JSON representation issues line breaks SHALL NOT be used within Base64-encoded data. When
data is base64url-encoded it SHALL be encoded as “base64url” as defined in RFC 4648 [6].

6 Architectures and use cases
The present specification and the protocols defined herein aim to support different use cases. However,
they focus on the scenario of remote signing defined for example as “the creation of remote electronic
signatures, where the electronic signature creation environment is managed by a trust service provider on
behalf of the signatory” in EU Regulation 910/2014 [i.1], whereas §52.

This means that other scenarios for signing in distributed environments assisted by remote servers – like
those described in ETSI SR 019 020 [i.2](“Standards for AdES digital signatures in mobile and distributed
environment”) – are not covered in the present version of this specification. In particular, use cases where
the signing key is contained within a signer's personal device are not covered: for example, signing a
document located on a server with a private key contained in a mobile SIM card, or in a cryptographic
device connected to a personal computer. These are relevant use cases, although not fitting in the core
definition of “remote signature”, so they may be specifically covered in future updates of the specification.

6.1 Supported architectures
The current version of the specifications focuses on the interface between the Signature Application and
the remote signing service provider. The following figure shows a typical but not restrictive example of the
architecture.

12 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

Figure 1: Remote signing corners

There are four main corners in the remote signing scenario.

The Signature Application retrieves the document to be signed from the user, and, if needed the
certificates, revocation information and time-stamps from the corresponding trust service provider. It
requests the remote signing service provider to create the signature of the hash value.

The RSSP connects to the CA for the credential binding. In some cases, the CA may also be included in the
process of creating the signing key.

The authorization for service or credential access can be done either passing through the signature
application or using a redirection to an external OAuth 2.0 authorization server (AS). In many cases, the
authorization server is part of the RSSP.

7 Introduction to the remote service protocols API
Web applications and services use Application Programming Interfaces (APIs) to talk to each other.
Technically speaking, in the web service context, an API is a set of programming instructions for accessing a
Web-based software application or service.

The remote service protocols API allows a signature application to communicate with a remote service via
the Internet by leveraging a sequence of calls to methods.

7.1 Format and syntax of the API
This specification defines Web services APIs that are based on technical standards and protocols such as
HTTP and JSON. This API uses HTTP POST requests with JSON payload and JSON responses. JSON is an open-
standard media type format as defined by RFC 4627 [5] that uses human-readable text to transmit data

13 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

objects consisting of attribute-value pairs. These properties make JSON an ideal data-interchange language
which is used as the most common data format for asynchronous communications.

The functions offered by the remote service are represented by HTTP RPC endpoints accepting arguments
as JSON in the request body and returning results as JSON in the response body. For this reason, the HTTP
header of the invocation method SHALL include a Content-Type: application/json header.

The remote service SHALL use HTTP version 1.1 or higher.

A JSON schema corresponding to the API defined in the present specification is available. See Section 12.

7.2 Remote service base URI
The remote service base URI defines the style and format of the HTTP endpoint URI of a remote service
conforming to this specification.

The base URI contains the version number of the APIs that is implemented by the remote signing service
provider. In the case of this specification, the version number SHALL be v1 . Future versions of this
specification MAY not be completely retro-compatible.

https://service.domain.org/csc/v1/

The service.domain.org hostname is used in this specification as an example and it SHOULD be
replaced with a hostname registered by the remote signing service provider. The endpoints of the API
methods documented in this specification SHALL be concatenated to the base URI. An exception is given by
the OAuth 2.0 methods, as defined in section 8.3, which MAY use URIs that are independent from the
service base URI.

7.3 Integrity and confidentiality
A remote service conforming to this specification SHALL guarantee the integrity and confidentiality of the
communication channel between the signature application and the remote service.

The integrity and confidentiality of the communication channel between the user and the signature
application or the remote service are out of the scope of this specification.

The remote service SHOULD implement Transport Layer Security (TLS) in order to ensure the integrity and
confidentiality of the communications. This prevents easy eavesdropping or impersonation if
authentication credentials are hijacked. Another advantage of always using TLS is that guaranteed
encrypted communications simplifies the authentication schemes, so for example simple mechanisms like
Basic HTTP authentication can be used because the elements used in the authentication (username and
password) are always transmitted over an encrypted channel.

The remote service MAY use other methods than TSL, for example using VPN.

TLS 1.3 as described in RFC 8446 [19] is, at the time of this writing, the latest version of TLS. Until TLS 1.3 is
widely adopted, the previous version TLS 1.2 as described in RFC 5246 [7] SHALL be supported by remote
services conforming to this specification and is the RECOMMENDED mechanism to use for interoperability
reasons. TLS 1.2 provides access to advanced cipher suites that support elliptic curve cryptography and
authenticated encryption with associated data (AEAD) block cipher modes. TLS 1.1 MAY be used, but it is
also less secure. TLS 1.0 is considerably less secure and some security certifications like PCI DSS 3.1
explicitly forbid it, so remote services SHOULD NOT support it.

14 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

All versions of SSL (SSLv3 as defined in RFC 6101 [i.4] or SSLv2 as defined in [i.7]), the security protocol used
before TLS, are considered insecure. Remote services conforming to this specification SHALL NOT
implement SSL.

7.4 Remote service information
This specification defines a protocol to connect a signature application to a remote service. Other similar
specifications exist in the industry, but they are typically proprietary and incompatible between each other,
so if a signature application wants to support multiple remote services, then the development effort would
increase significantly.

This specification has been designed to support modular services that may be implemented in line with the
capacity and mission of the provider. This means that a remote service that supports this specification MAY
implement only a subset of the API methods defined herein. In order to facilitate this approach, this
specification defines the info method, which all remote services SHALL implement to allow the signature
application to discover which of the API methods are supported.

In addition, the info method returns information on the remote service which may be useful to a calling
application to access the functions and features of the service.

7.5 clientData parameter
Most methods allow to provide clientData as an optional input parameter. It can contain any arbitrary data
from the signature application. This data allows the signature application to handle other application-
specific data like, e.g., a transaction identifier.

The remote service MAY use this information and it MAY also log this data together with information of the
call. This parameter MAY expose sensitive data to the remote service. Therefore, it SHOULD be used
carefully by signature applications.

8 Authentication and authorization
This specification supports two types of authentication and authorization:

a. Service authorization and authentication.
b. Credential authorization.

8.1 Service authorization and authentication
In order to protect the remote service from unauthorized access, this specification requires the signature
application to obtain a valid “access token” to authorize the access to the APIs. This type of authorization is
called service authorization. Various types of authorization mechanisms can be supported, and more will be
supported in future versions, and the signature application SHALL adopt any of those available from the
remote service as stated in the response to the info method, as defined in section 11.1.

The remote service MAY also adopt an indirect way of authorizing access to the API. The underlying
communication channel with the signature application MAY ensure access control in a different way, for
example with a private point-to-point LAN connection or through a VPN (Virtual Private Network).

The access to the APIs SHALL be authenticated. When the authentication is under the control of the
signature application provider, then the user SHALL be properly authenticated by this provider before
getting access to the remote service. This scenario supports organizations that manage a user community

15 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

with an existing form of authentication, for example a Bank managing the users from their Internet Banking
service. This means that, in order to retrieve the signing credentials associated to a user, this organization
would have to take care of the correspondence between the user identifier in their own domain and the
user identifier in the remote service’s domain.

When the authentication is under the control of the remote service, the signature application SHALL
perform a token-based authentication to the remote service by means of authentication factors collected
from the user, preferably via an OAuth 2.0 authorization mechanism, or through HTTP Basic or HTTP Digest
authentication. In practice, the signature application will require the user to authenticate directly to the
remote service using any of the available methods. This would offer an authentication mechanism even in
case the signature application and the remote service have not previously established any form of service
authentication.

Two methods are defined in this specification to obtain an access token to authorize the access to the
remote service API:

 The oauth2/token method SHALL be used when an OAuth 2.0 authorization mechanism is
supported by the remote service. The signature application will not collect any authentication
factors from the user, but instead it will redirect to the remote service that will authenticate the
user. See Section 8.3 for further information on how to implement OAuth 2.0 authorization.

 The auth/login method SHALL be used when OAuth 2.0 is not available and HTTP Basic or Digest
authentication mechanisms are preferred and supported by the remote service. The signature
application will collect the authentication factors from the user and will submit them to the remote
service to obtain an authorization.

In both cases, if the user grants the authorization, the remote service will return a service access token to
the signature application. From then on, all authenticated requests to API methods SHALL use an
Authorization header with Bearer type followed by the service access token.

If the user does not grant the permission, the remote service will return an error message and no access to
authenticated API methods will be possible.

8.2 Credential authorization
Accessing a credential for remote signing requires an authorization from the user who owns it to control
the signing key associated to it.

The RSSP can manage the authorization in multiple ways, with different technologies and a variable number
of authorization factors. This really depends on the implementation and on the policy adopted by the RSSP,
and MAY also be determined by the level of compliance to industry and regulatory requirements, like in the
case of standards like CEN EN 419 241-1 [i.5], which defines different “sole control assurance levels”, SCAL1
and SCAL2.

For a precise description of the difference between SCAL1 and SCAL2 we refer to CEN EN 419 241-1 [i.5].
However, with regards to this specification, two aspects should be noted about SCAL2:

1. The signature activation data, used to authorize a signature, is linked to the document or the
documents to be signed.

2. A two-factor authorization is needed to authorize a signature.

Three different types of credential authorization are defined and supported in this specification:

16 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

 Explicit authorization
 Implicit authorization
 OAuth 2.0 authorization

Explicit authorization means that the remote service relies on the signature application to collect, in its own
environment, authentication factors like PIN or One-Time Passwords (OTP), according to the parameters
returned by the credentials/info method, as defined in section 11.5. This method returns the type, format
and combination of required or optional authentication factors, such that the signature application could
show the proper interactive controls to collect them from the user.

A common type of explicit authorization is based on a static PIN - typically defined by the user - associated
to the signing key when it is generated. To increase the level of assurance of user control, ensuring that
only the authorized user could create a signature with a certain credential, a stronger authorization factor
MAY be adopted. A dynamically generated text-based One-Time Password (OTP) is a common strong
authorization mechanism. PIN and OTP are supported directly in this specification and can be used in
combination to service authorization to achieve the highest levels of assurance of the user’s sole control,
and can be used to support SCAL1 and SCAL2 as defined in CEN 419 241-1 [i.5].

Implicit authorization means that the remote service is taking care of the authorization process
autonomously, by engaging with the user without any intermediation from the signature application. In this
case, the signature application will invoke the credential authorization methods without passing any
authentication factors, as these would be implicitly managed by the remote service directly with the user.

For example, the RSSP can support SCAL2 as defined in CEN 419 241-1 [i.5] using implicit authorization
providing a completely independent two-factor authorization mechanism that does not require any user
interaction to occur within the signature application.

Biometric authentication and phone call drop are other examples of possible authorization mechanisms. As
these and other authorization mechanisms require a very peculiar user interface, they can be supported by
means of an OAuth 2.0-based authorization scheme.

8.3 OAuth 2.0 Authorization
OAuth 2.0 is an authorization framework that enables applications to obtain access to HTTP based services.
It provides client applications a “secure delegated access” to server resources on behalf of a resource
owner. In the context of this specification, the signature application is the client application. This allows
resource owners to authorize third-party access to their server resources without sharing their credentials.

Using the OAuth 2.0 authorization scheme, the signature application will show a web page managed by the
remote service where the user will be authenticated according to the specific mechanism implemented
there. After a successful authentication, the authorization server of the remote service will return an
authorization code or an access token to the signature application. This access token will be used later to
authorize access to the remote service’s resources.

This specification supports the following types of OAuth 2.0 flows as described in RFC 6749 [11]:

 Authorization Code flow
 Client Credentials flow

The use of the Implicit Grant Flow is explicitly forbidden in this specification due to security flaws.

17 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

Any provider implementing an OAuth 2.0 authorization flow is strongly advised to follow the
recommendations from OAuth 2.0 Security Best Current Practice [20].

OAuth 2.0 authorization mechanisms can be used for both Service and Credentials authorization. A remote
service can therefore implement a single OAuth 2.0 authorization server supporting two different scopes
for “service” and “credential” authorization.

Before using an OAuth 2.0 authorization mechanism, the signature application SHALL obtain from the
remote service the client credentials (a Client ID and conditionally a Client Secret) and register one or more
Redirect URI address with it. The means through which the signature application obtains these information
from the remote service are beyond the scope of this specification.

The following sections describe the OAuth 2.0 endpoints supported by this specification and how to invoke
them. Notice that the Client Credential flow is not described separately because it can be invoked by means
of the oauth2/token endpoint, as defined in section 8.3.3, using a grant_type with value
“client_credentials”.

Tokens issued by OAuth 2.0 authorization endpoints SHOULD be revoked by using the authorization
server’s revocation endpoint oauth2/revoke, as defined in section 8.3.4, if supported. Tokens MAY also be
revoked by calling the remote service’s auth/revoke method, as defined in section 11.3, if supported.

The info method, as defined in section 11.1, specifies a base URI for all OAuth 2.0 endpoints. The URI path
components of the supported OAuth 2.0 API methods specified in sections 8.3.2, 8.3.3, and 8.3.4 SHALL be
concatenated to the OAuth 2.0 base URI.

8.3.1 Restricted access to authorization servers
OAuth 2.0 authorization frameworks typically offer an open and unrestricted authorization endpoint. In the
context of the authorization server of a remote service, this means that a user will have no restrictions
while accessing the oauth2/authorize endpoint, as defined in section 8.3.2.

However, a remote service may need to restrict users from accessing its authorization server. There are
two common cases when a restriction would be desirable: with remote services connected to Corporate
Identity Management services or connected to public Electronic Identity (eID) frameworks. In the former
case, the remote service may be required to prevent access to users that are not affiliated with the
Corporate, in the latter the remote service may be restricted to avoid abuse by unauthorized users.

To restrict access to the authorization server of a remote service, this specification introduces the
additional account_token parameter to be used when calling the oauth2/authorize endpoint. This
parameter contains a secure token designed to authenticate the authorization request based on an
Account ID that SHALL be uniquely assigned by the signature application to the signing user or to the user’s
application account.

In case a RSSP wants to provide restricted access to its authorization server, it SHOULD register in advance
the Account ID of the authorized users that need to have access to the oauth2/authorize endpoint.
The means and actions required to exchange and register an Account ID between users and the RSSP are
out of the scope of this specification.

The account_token parameter is based on a JSON Web Token (JWT), defined as follows, according to the
RFC 7519 [16]:

18 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

account_token = base64UrlEncode(<JWT_Header>) + "." +
 base64UrlEncode(<JWT_Payload>) + "." +
 base64UrlEncode(<JWT_Signature>)

JWT_Header

<JWT_Header> = {
"typ": "JWT",
"alg": "HS256"

}

JWT_Payload

<JWT_Payload> = {
"sub": "<Account_ID>", ‘Account ID
"iat": <Unix_Epoch_Time>, ‘Issued At Time
"jti": "<Token_Unique_Identifier>", ‘JWT ID
"iss": "<Signature_Application_Name>", ‘Issuer
"azp": "<OAuth2_client_id>" ‘Authorized presenter

}

JWT_Signature

<JWT_Signature> = HMACSHA256(
base64UrlEncode(<JWT_Header>) + "." +
base64UrlEncode(<JWT_Payload>),
SHA256(<OAuth2_client_secret>)

)

Parameters

Parameter Presence Value Description
typ REQUIRED String

JWT
The Header Parameter used to indicate that this object is a JSON Web Token
(JWT) according to RFC 7519 [16] Section 5.1.

alg REQUIRED String
HS256

The Header Parameter used to indicate that the algorithm of the signature of
the JWT is HMAC using SHA-256 according to RFC 7518 [15] Section 3.1.

sub REQUIRED String The client-defined Account ID that allows the RSSP to identify the account or
user initiating the authorization transaction.

iat
REQUIRED Number

The Unix Epoch time when the account_token was issued. The value is used to
determine the age of the JWT. The RSSP SHOULD define the lifetime of the JWT
and SHALL accept or reject an account_token based on its own expiration policy.

jti REQUIRED String A unique identifier for the JWT. This protects from replay attacks performed by
reusing the same account_token.

iss OPTIONAL String Contains the name of the issuer of the token (e.g. the commercial name of the
signature application).

azp REQUIRED String Contains the unique “client ID” previously assigned to the sgnature application
by the remote service.

19 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

Implementation notes

 The RSSP SHALL securely share the OAuth 2.0 client_id and client_secret with the signature application
as part of the OAuth 2.0 configuration (see section 8.3).

 The JWT_signature required to generate the account_token SHALL be calculated with the HMAC
function, using as shared secret the SHA256 hash of the OAuth 2.0 client_secret.

 The signature application SHOULD register in advance with the RSSP the list of Account ID parameters
associated with those users that are authorized to access a restricted authorization server.

Example

…?account_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiI3S1lCckpBLWtCOT
F5T1Rld1JZRzh5SGdzN3EtbzR1NiIsImlhdCI6MTUzNzAxMjgwMCwianRpIjoiYjgzZmY4OWEtZWQzZ
i00NjgxLTgyOGQtNzE2MGI5MTNjYTcyIiwiaXNzIjoiQ1NDIFNpZ25hdHVyZSBBcHBsaWNhdGlvbiIs
ImF6cCI6ImE4NzliNDE5LThmZWQtNDcyZS05Yzk3LTJmODk3NTIxODU3ZSJ9.SEwD3KGDPFX-
8IIJE7pC_RJ-0wdOVinEPTHmKKVQb6E&…

20 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

8.3.2 oauth2/authorize (OAuth 2.0 Authorization Code)
Description: Starts the OAuth 2.0 authorization server using an Authorization Code flow, as described

in Section 1.3.1 of RFC 6749 [11], to request authorization for the user to access the
remote service resources. The authorization is returned in the form of an authorization
code, which the signature application SHALL then use to obtain an access token with the
oauth2/token method. The authorization server SHOULD support two access token
scopes: “service” and “credential”. These scopes SHALL only be used separately to
obtain an access token suitable for service and credential authorization respectively.

At the end of the authorization process, the authorization server SHALL redirect the
user-agent by sending the HTTP/1.1 302 Found response with a Location header
containing the URI specified by the redirect_uri parameter, which SHALL be pre-
registered with the remote service by the signature application to avoid abuse by
unauthorized clients.

NOTE 1: oauth2/authorize does not specify a regular CSC API method, but rather the URI path
component of the address of the web page allowing the user to sign-in to the remote
service to authorize the signature application or to authorize a credential. The complete
URL to invoke the OAuth 2.0 authorization server is obtained by adding oauth2/authorize
to the base URI of the authorization server as returned in the oauth2 parameter by the info
method, as defined in section 11.1, and it does not necessarily include the base URI of the
remote service API.

NOTE 2: Be aware that oauth2/authorize is designed as an unauthenticated endpoint. A provider
offering this endpoint SHOULD protect the service from abuse and customer’s risk. This is
especially true when used for credential authorization. The authorization server MAY need
to (re-)authenticate the user through the user agent before establishing a different,
potentially cost-generating channel to the user (e.g. sending a push notification). A provider
MAY apply practices like session cookies or HTML5 session storage in order to retain a good
user experience, while addressing and mitigating related security issues. A provider MAY
also implement individual access authorization mechanisms on the oauth2/authorize
endpoint. The means for achieving this are beyond the scope of this specification.

Input: In order to maintain full compatibility with the OAuth 2.0 standard, the following
parameters SHALL be passed as a query string with the authorization endpoint URI using
the "application/x-www-form-urlencoded" format with a character encoding of UTF-8 in
the HTTP request entity-body.

NOTE 3: The list of parameters is split between standard parameters that are defined in the OAuth
2.0 standard (see RFC 6749 [11]) and parameters that are defined in this specification.
These parameters SHALL be combined in a single query string.

NOTE 4: Although RFC 3986 [3] doesn’t define length limits on URIs, there are practical limits
imposed by browsers and web servers. It is RECOMMENDED not to exceed an URI length of
2083 characters for maximum interoperability.

21 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

Input parameters defined in OAuth 2.0

Parameter Presence Value Description

response_type REQUIRED String
code

The value SHALL be “code”.

client_id REQUIRED String The unique “client ID” previously assigned to the
signature application by the remote service.

redirect_uri

OPTIONAL String

The URL where the user will be redirected after the
authorization process has completed. Only a valid URI pre-
registered with the remote service SHALL be passed. If
omitted, the remote service will use the default redirect
URI pre-registered by the signature application.

scope

OPTIONAL String
service | credential

The scope of the access request as described by Section
3.3 of RFC 6749 [11].
• “service”: it SHALL be used to obtain an

authorization code suitable for service authorization.
• “credential”: it SHALL be used to obtain an

authorization code suitable for credentials
authorization.

The parameter is OPTIONAL. The defaults scope is
“service” in case it is omitted.

state

OPTIONAL String

Up to 255 bytes of arbitrary data from the signature
application that will be passed back to the redirect URI.
The use is RECOMMENDED for preventing cross-site
request forgery.

Input parameters defined in this specification

Parameter Presence Value Description
lang

OPTIONAL String

Request a preferred language according to RFC 5646 [9].
If specified, the authorization server SHOULD render the
authorization web page in this language, if supported. If
omitted and an Accept-Language header is passed, the
authorization server SHOULD render the authorization
web page in the language declared by the header value,
if supported.
The authorization server SHALL render the web page in
its own preferred language otherwise.

credentialID

REQUIRED
Conditional String

The identifier associated to the credential to authorize. It
SHALL be used only if the scope of the OAuth 2.0
authorization request is “credential”. Be aware that this
parameter value may contain characters that are
reserved, unsafe or forbidden in URLs and therefore
SHALL be url-encoded by the signature application.

numSignatures

REQUIRED
Conditional Number

The number of signatures to authorize. Multi-signature
transactions can be obtained by using a combination of
array of hash values and by calling multiple times the
signatures/signHash method, as defined in section 11.9.
It SHALL be used only if the scope of the OAuth 2.0
authorization request is “credential”.

hash

REQUIRED
Conditional String

One or more base64url-encoded hash values to be
signed. It allows the server to bind the SAD to the hash,
thus preventing an authorization to be used to sign a
different content. It SHALL be used if the SCAL
parameter returned by credentials/info method, as
defined in section 11.5, for the current credentialID is
“2”, otherwise it is OPTIONAL. Multiple hash values can
be passed as comma separated values, e.g.
oauth2/authorize?hash=dnN3ZX…ZmRm,ZjIxM3…Z2Zk,…

22 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

The order of multiple values does not have to match the
order of hashes passed to signatures/signHash method,
as defined in section 11.9.

description

OPTIONAL String

A free form description of the authorization transaction
in the lang language. The maximum size of the string is
500 characters. It can be useful to provide some hints
about the occurring transaction.

account_token

OPTIONAL String

An account_token as defined in section 8.3.1. It MAY be
required by a RSSP if their authorization server has a
restricted access. The value is a JSON Web Token (JWT)
according to RFC 7519 [16].

clientData

OPTIONAL String

Arbitrary data from the signature application. It can be
used to handle a transaction identifier or other
application-specific data that may be useful for
debugging purposes. WARNING: this parameter MAY
expose sensitive data to the remote service. Therefore it
SHOULD be used carefully.

Output: After a successful user authentication, the authorization server SHALL redirect the

user-agent by sending the HTTP/1.1 302 Found response with a Location header
containing the URI specified by the redirect_uri parameter and adding the following
values as query component using the "application/x-www-form-urlencoded" format.

Attribute Presence Value Description

code

REQUIRED String

The authorization code generated by the authorization
server. It SHALL be bound to the client identifier and the
redirection URI. It SHALL expire shortly after it is issued to
mitigate the risk of leaks. The signature application
cannot use the value more than once.

state
REQUIRED
Conditional String

Contains the arbitrary data from the signature application
that was specified in the state attribute of the input
request. It SHALL be returned when specified in the
request.

error

REQUIRED
Conditional

String
invalid_request |
access_denied |

unsupported_respo
nse_type |

invalid_scope |
server_error |

temporarily_unavail
able

A single error code string from the following list:
• “invalid_request”: it SHALL be used if the request is

missing a required parameter.
• “access_denied”: it SHALL be used if the server

denied the request.
• “unsupported_response_type”: it SHALL be used if

the server does not support the required response
type.

• “invalid_scope”: it SHALL be used if the requested
scope is invalid, unknown, or malformed.

• “server_error”: it SHALL be used if the server
encountered an unexpected condition that prevented
it from fulfilling the request.

• “temporarily_unavailable”: it SHALL be used if the
server is currently unable to handle the request due
to temporary overload or maintenance.

It SHALL be returned only in case of an error.
error_description OPTIONAL String Human-readable text providing additional error

information. It MAY be returned only in case of an error.
error_uri

OPTIONAL String
A URI identifying a human-readable web page with
information about the error. It MAY be returned only in
case of an error.

23 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

Sample Request (Service authorization)

GET https://www.domain.org/oauth2/authorize?
response_type=code&
client_id=<OAuth2_client_id>&
redirect_uri=<OAuth2_redirect_uri>&
scope=service&
lang=en-US&
state=12345678

Sample Response (Service authorization)

HTTP/1.1 302 Found
Location: <OAuth2_redirect_uri>?
code=FhkXf9P269L8g&
state=12345678

Sample Request (Credential authorization)

GET https://www.domain.org/oauth2/authorize?
response_type=code&
client_id=<OAuth2_client_id>&
redirect_uri=<OAuth2_redirect_uri>&
scope=credential&
credentialID=GX0112348&
numSignatures=1&
hash=MTIzNDU2Nzg5MHF3ZXJ0enVpb3Bhc2RmZ2hqa2zDtnl4&state=12345678

Sample Response (Credential authorization)

HTTP/1.1 302 Found
Location: <OAuth2_redirect_uri>?code=HS9naJKWwp901hBcK348IUHiuH8374&
state=12345678

Error Response

HTTP/1.1 302 Found
Location: <OAuth2_redirect_uri>?error=invalid_request&
error_description=Invalid%20Authorization%20Code&state=12345678

24 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

8.3.3 oauth2/token (OAuth 2.0 Token Endpoint)
Description: Obtain an OAuth 2.0 bearer access token from the authorization server by passing

either the client credentials pre-assigned by the authorization server to the signature
application, or the authorization code or refresh token returned by the authorization
server after a successful user authentication, along with the client ID and client secret
in possession of the signature application. This method SHALL be used only in case of
an Authorization Code flow as described in Section 1.3.1 of RFC 6749 [11], in case of
Client Credential flow as described in Section 1.3.4 of RFC 6749 [11] or in case of
Refresh Token flow as described in Section 1.5 of RFC 6749 [11]. Notice that the Client
Credential flow and Refresh Token flow can be used only for service authorization.

A confidential client SHALL authenticate with the authorization server by applying one
of the following means:

 Passing a pre-issued client secret as a parameter in the request body as described
in Section 2.3.1 of RFC 6749 [11].

 Applying a pre-issued client secret within the HTTP Basic authentication scheme as
described in Section 2.3.1 of RFC 6749 [11].

 Passing a client assertion as defined in section 4.2 of RFC 7521 [14].

NOTE 1: oauth2/token does not specify a regular CSC API method, but rather the URI path
component of the OAuth 2.0 Token endpoint. The complete URL to invoke this endpoint is
obtained by adding oauth2/token to the base URI of the authorization server as returned in
the oauth2 parameter by the info method, as defined in section 11.1, and it does not
necessarily include the base URI of the remote service API.

Input: In order to maintain full compatibility with the OAuth 2.0 standard, the following
parameters SHALL be passed as a query string with the authorization endpoint URI using
the "application/x-www-form-urlencoded" format with a character encoding of UTF-8 in
the HTTP request entity-body.

NOTE 2: The list of parameters is split between standard parameters that are defined by the OAuth
2.0 framework (see RFC 6749 [11] and RFC 7521 [14]) and parameters that are defined in
this specification. These parameters SHALL be combined in a single query string.

Input parameters defined in OAuth 2.0

Parameter Presence Value Description
grant_type

REQUIRED

String
authorization_code
| client_credentials

| refresh_token

The grant type, which depends on the type of OAuth 2.0
flow:
• “authorization_code”: SHALL be used in case of

Authorization Code Grant.
• “client_credentials”: SHALL be used in case of Client

Credentials Grant.
• “refresh_token”: SHALL be used in case of Refresh

Token flow.
code

REQUIRED
Conditional String

The authorization code returned by the authorization
server. It SHALL be bound to the client identifier and the
redirection URI. This SHALL be used only when
grant_type is “authorization_code”.

refresh_token
REQUIRED
Conditional String

The long-lived refresh token returned from the previous
session. This SHALL be used only when the scope of the
OAuth 2.0 authorization request is “service” and
grant_type is “refresh_token” to reauthenticate the user

25 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

according to the method described in Section 1.5 of RFC
6749 [11].

client_id REQUIRED String The client_id as defined in the Input parameter table in
section 8.3.2.

client_secret
REQUIRED
Conditional String

This is the “client secret” previously assigned to the
signature application by the remote service. It SHALL be
passed if no authorization header and no client assertion
is used.

client_assertion

REQUIRED
Conditional String

The assertion being used to authenticate the client.
Specific serialization of the assertion is defined by profile
documents.
It SHALL be passed if no authorization header and no
client_secret is used.

client_assertion_type REQUIRED
Conditional String

The format of the assertion as defined by the
authorization server. The value will be an absolute URI.
It SHALL be passed if a client assertion is used.

redirect_uri

REQUIRED
Conditional String

The URL where the user was redirected after the
authorization process completed. It is used to validate
that it matches the original value previously passed to the
authorization server. This SHALL be used only if the
redirect_uri parameter was included in the authorization
request, and their values SHALL be identical.

Input parameters defined in this specification

Parameter Presence Value Description
clientData
 OPTIONAL String The clientData as defined in the Input parameter table in

section 8.3.2.

Output value: This method returns the following values using the "application/json" format:

Attribute Presence Value Description
access_token

REQUIRED String

The short-lived access token to be used depending on the
scope of the OAuth 2.0 authorization request.
When the scope is “service” then the authorization server
returns a bearer token to be used as the value of the
“Authorization: Bearer” in the HTTP header of the
subsequent API requests within the same session.
When the scope is “credential” then the authorization
server returns a Signature Activation Data token to
authorize the signature request. This value SHOULD be
used as the value for the SAD parameter when invoking
the signatures/signHash method, as defined in section
11.9.

refresh_token

OPTIONAL String

The long-lived refresh token used to re-authenticate the
user on the subsequent session based on the method
described in Section 1.5 of RFC 6749 [11].
The presence of this parameter is controlled by the user
and is allowed only when the scope of the OAuth 2.0
authorization request is “service”.
In case grant_type is “refresh_token” the authorization
server MAY issue a new refresh token, in which case the
client SHALL discard the old refresh token and replace it
with the new refresh token.

token_type

REQUIRED String
Bearer | SAD

When the scope is “service”, this specifies a "Bearer"
token type as defined in RFC6750 [12].
When the scope is “credential”, this specifies a “SAD”
token type.

expires_in OPTIONAL Number The lifetime in seconds of the service access token. If
omitted, the default expiration time is 3600 sec. (1 hour).

26 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

NOTE 3: The lifetime of the refresh token is determined by the RSSP.

Error Case Status Code Error Error Description
Missing “client_id” parameter 400

(bad request) invalid_request Missing parameter client_id

Missing “grant_type”
parameter

400
(bad request) invalid_request Missing parameter grant_type

Invalid parameter
“grant_type”

400
(bad request) invalid_request Invalid parameter grant_type

Missing “code” parameter 400
(bad request) invalid_request Missing parameter code

Missing “refresh_token”
parameter

400
(bad request) invalid_request Missing parameter refresh_token

Invalid “client_id” parameter 400
(bad request) invalid_request Invalid parameter client_id

Invalid “code” parameter 400
(bad request) invalid_grant Invalid parameter code

The “redirect_uri” parameter
does not match the
redirection URI in the
authorization request

400
(bad request) invalid_grant

redirect_uri parameter does not match
redirect_uri parameter of authorization request

Invalid “refresh_token”
parameter

400
(bad request) invalid_grant Invalid parameter refresh_token

Refresh token expired 400
(bad request) invalid_grant Refresh token expired

Authorization code invalid or
expired

400
(bad request) invalid_grant Authorization code is invalid or expired

Missing “client_secret”
parameter and no
authorization header
provided

400 (bad request) |
401 (unauthorized) invalid_request

Client authorization required

Invalid “client_secret”
parameter

400
(bad request)

invalid_request Invalid parameter client_secret

27 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

Sample Request (Authorization code flow)

POST oauth2/token HTTP/1.1
Host: www.domain.org
Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&
code=FhkXf9P269L8g&
client_id=<OAuth2_client_id>&
client_secret=<OAuth2_client_secret>&
redirect_uri=<OAuth2_redirect_uri>

cURL example

curl -i -X POST
 -H "Content-Type: application/x-www-form-urlencoded"
 -d 'grant_type=authorization_code&
 code=FhkXf9P269L8g&
 client_id=<OAuth2_client_id>&
 client_secret=<OAuth2_client_secret>&
 redirect_uri=<OAuth2_redirect_uri>'
https://www.domain.org/oauth2/token

Sample Response (for service scope)

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8

{
 "access_token": "4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA",
 "refresh_token": "_TiHRG-bA H3XlFQZ3ndFhkXf9P24/CKN69L8gdSYp5_pw",
 "token_type": "Bearer",
 "expires_in": 3600
}

Sample Response (for credential scope)

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8

{
 "access_token": "3XlFQZ3ndFhkXf9P24/CKN69L8gdSYp5H3XlFQZ3ndFhkXf9P2",
 "token_type": "SAD",
 "expires_in": 300
}

28 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

Sample Request (Refresh token flow)

POST oauth2/token HTTP/1.1
Host: www.domain.org
Content-Type: application/x-www-form-urlencoded

grant_type=refresh_token&
refreshToken=_TiHRG-bA+H3XlFQZ3ndFhkXf9P24%2FCKN69L8gdSYp5_pw&
client_id=<OAuth2_client_id>&
client_secret=<OAuth2_client_secret>&
redirect_uri=<OAuth2_redirect_uri>

cURL example

curl -i -X POST
 -H "Content-Type: application/x-www-form-urlencoded"
 -d 'grant_type=refresh_token&
 refreshToken=_TiHRG-bA+H3XlFQZ3ndFhkXf9P24%2FCKN69L8gdSYp5_pw&
 client_id=<OAuth2_client_id>&
 client_secret=<OAuth2_client_secret>&
 redirect_uri=<OAuth2_redirect_uri>'
https://www.domain.org/oauth2/token

Sample Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8

{
 "access_token": "K7x-0Lj7Wwdt4pwH3XlFQZ3ndFhkXf9P2_TiHRQaxZ9kJ0",
 "token_type": "Bearer",
 "expires_in": 3600
}

29 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

8.3.4 oauth2/revoke (OAuth 2.0 Revocation Endpoint)
Description: Revoke an access token or refresh token that was obtained from the authorization

server, as described in RFC 7009 [13]. This method may be used to enforce the security
of the remote service. When the signature application needs to terminate a session, it
is RECOMMENDED to invoke this method to prevent further access by reusing the
token.
This method allows the signature application to invalidate its tokens according to the
following approach:

 If the token passed to the request is a refresh_token, then the authorization server
SHALL invalidate the refresh token and it SHALL also invalidate all access tokens
based on the same authorization grant.

 If the token passed to the request is an access_token, then the authorization server
SHALL invalidate the access token and it SHALL NOT revoke any existing refresh
token based on the same authorization grant.

The invalidation of the token takes place immediately, and the token cannot be used
again after its revocation. As a token issued in the process of credential authorization is
automatically invalidated as soon as its usage limit is reached, a client does not have to
revoke the corresponding token after use. However, a provider SHOULD support the
revocation of such a token before reaching the usage limit.

A confidential client SHALL authenticate with the authorization server by applying one
of the following means:

 Passing a pre-issued client secret as a parameter in the request body as described
in Section 2.3.1 of RFC 6749 [11].

 Applying a pre-issued client secret within the HTTP Basic authentication scheme as
described in Section 2.3.1 of RFC 6749 [11].

 Passing a client assertion as defined in Section 4.2 of RFC 7521 [14].

NOTE 1: oauth2/revoke does not specify a regular CSC API method, but rather the URI path
component of the OAuth 2.0 Revocation endpoint. The complete URL to invoke this
endpoint is obtained by adding oauth2/revoke to the base URI of the authorization server
as returned in the oauth2 parameter by the info method, as defined in section 11.1, and it
does not necessarily include the base URI of the remote service API.

Input: In order to maintain full compatibility with the OAuth 2.0 standard, the following
parameters SHALL be passed as a query string with the authorization endpoint URI using
the "application/x-www-form-urlencoded" format with a character encoding of UTF-8 in
the HTTP request entity-body.

NOTE 2: The list of parameters is split between standard parameters that are defined by the OAuth
2.0 framework (see RFC 6749 [11] and RFC 7521 [14]) and parameters that are defined in
this specification. These parameters SHALL be combined in a single query string.

30 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

Input parameters defined in OAuth 2.0

Parameter Presence Value Description

token REQUIRED String The token that the signature application wants to get
revoked.

token_type_hint

OPTIONAL
String

access_token |
refresh_token

Specifies an optional hint about the type of the token
submitted for revocation. If the parameter is omitted, the
authorization server SHOULD try to identify the token
across all the available tokens.

client_id REEQUIRED
Conditional String

The client_id as defined in the Input parameter table in
section 8.3.2. It SHALL be passed if no authorization
header is used.

client_secret REQUIRED
Conditional String The client_secret as defined in the Input parameter table

in section 8.3.3.
client_assertion REQUIRED

Conditional String The client_assertion as defined in the Input parameter
table in section 8.3.3.

client_assertion_type REQUIRED
Conditional String The client_assertion_type as defined in the Input

parameter table in section 8.3.3.

Input parameters defined in this specification

Parameter Presence Value Description
clientData OPTIONAL String The clientData as defined in the Input parameter table in

section 8.3.2.

Output: This method has no output values and the response returns “No Content” status.

Error Case Status Code Error Error Description
Missing “token” parameter 400

(bad request) invalid_request Missing parameter token

“token_hint” parameter
present, not equal to
“access_token” nor
“refresh_token”

400
(bad request) invalid_request

Invalid parameter token_type_hint

Invalid access_token or
refresh_token

400
(bad request) invalid_request Invalid string parameter token

Unsupported token type
400

(bad request) unsupported_token_type

The authorization server does not support
the revocation of the presented token type.
That is, the client tried to revoke an access
token on a server not supporting this feature.

Missing “client_id”
parameter and no
authorization header
provided

400 (bad request) |
401 (unauthorized) invalid_request

Missing parameter client_id

Invalid “client_id” parameter 400
(bad request) invalid_request Invalid parameter client_id

Missing “client_secret”
parameter and no
authorization header
provided

400 (bad request) |
401 (unauthorized) invalid_request

Client authorization required

Invalid “client_secret”
parameter

400
(bad request) invalid_request Invalid parameter client_secret

Invalid Authorization header 401 (unauthorized) invalid_client Invalid authorization header

31 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

Sample Request

POST /oauth2/revoke HTTP/1.1
Host: www.domain.org
Content-Type: application/x-www-form-urlencoded

token=_TiHRG-bA-H3XlFQZ3ndFhkXf9P24/CKN69L8gdSYp5_pw&
token_type_hint=refresh_token&
client_id=<OAuth2_client_id>&
client_secret=<OAuth2_client_secret>&
clientData=12345678

cURL example

curl -i -X POST
 -H "Content-Type: application/x-www-form-urlencoded"
 -d 'token=_TiHRG-bA-H3XlFQZ3ndFhkXf9P24/CKN69L8gdSYp5_pw&
 token_type_hint=refresh_token&
 client_id=<OAuth2_client_id>&
 client_secret=<OAuth2_client_secret>&
 clientData=12345678'
https://www.domain.org/oauth2/revoke

Sample Response

HTTP/1.1 204 No Content

32 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

9 Creating a remote signature
Remote signature services allow generating digital signatures remotely by means of an RSCD operated as a
service. An RSSP is an organization that manages the RSCD on behalf of the signers.

In general, each time a remote signature is required, a strong authentication mechanism SHOULD be
invoked. Strong authentication requiring the user to authorize to the signature application multiple times in
a rapid sequence using authorization mechanisms like OTP can be cumbersome. In order to improve the
signer’s experience, the strong authentication MAY be allowed to occur only once per signing session (for
example with a single OTP) covering multiple signatures.

The current specification supports the following three use cases:

1. The remote signature of a single hash;
2. The remote signature of multiple hashes passed in a single signature operation;
3. The remote signature of multiple hashes passed across multiple signature operations occurring

within a single signing session.

A RSSP SHALL support at least case 1, with credentials authorization occurring every time a signature is
created.

The RSSP decides whether to support multi-signature transactions (use cases 2 and 3) or not. In some cases,
regulatory or security requirements may forbit multi-signature transactions. The multisign output value of
the credentials/info method, as defined in section 11.5, provides information if multi-signature
transactions are supported by a specific credential or not.

A multi-signature transaction can be created by invoking the signatures/signHash method, as defined in
section 11.9, and submitting multiple hash values in one run (use case 2, suitable for “batch signing” of
multiple documents) or by invoking signatures/signHash multiple times (use case 3, suitable for creating
multiple signatures from a single user in a PDF document). In both cases, the authorization mechanism
adopted by the signature application SHALL explicitly specify the total number of signatures to be
authorized and the remote signing service SHALL prevent signature applications from creating more
signatures than authorized.

See section 13 to understand the workflows supported in this specification and the sequence of API calls to
be invoked to create the supported types of remote signatures.

10 Error handling
Errors are returned by the remote service using standard HTTP status code syntax. Additional information is
included in the body of the response from an API request using JSON.

The HTTP protocol defines a list of standard status codes that are referenced in this specification to help
the signature application deal with these responses accordingly. For the events described in Table 2, the
remote service SHALL support the corresponding HTTP status codes.

33 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

Table 2 – Supported HTTP Status Codes

Standard Status Code Description
200 OK Response to a successful API method request.

204 No Content Response to a successful API method request in case no content is
returned.

302 Found Response used to redirect the user to an OAuth 2.0 authorization endpoint.
400 Bad Request Returned due to unsupported, invalid or missing required parameters.

401 Unauthorized Returned when a bad or expired authorization token is used.
429 Too Many Requests Returned when a request is rejected due to rate limiting.
500 Internal Server Error Returned when the server encounters an unexpected condition.

501 Not Implemented Returned when an unimplemented method is requested.

503 Service Unavailable Returned when the server is currently unable to handle the request due to
temporary overloading or maintenance conditions.

Status codes 429 and 50x are applicable to the remote service overall and are not specific to any API
methods. For this reason, they are not mentioned in the error tables for each method specifically.

10.1 Error messages
Just as an HTML error page shows a useful error message to a visitor, the remote service implementing the
API described in this specification SHALL provide a useful error message in case something goes wrong.
When an error is detected, the remote service SHALL return the corresponding HTTP status code and SHALL
return the information on the error in the body of the HTTP response using the "application/json" media
type, as defined by RFC 4627 [5]. The parameters are serialized into a JSON structure by adding each
parameter at the highest structure level. Parameter names and string values are included as JSON strings as
shown in the following example:

HTTP/1.1 400 Bad Request
Date: Mon, 03 Dec 2018 12:00:00 GMT
Content-Type: application/json;charset=utf-8
Content-Length: ...

{
 "error": "invalid_request",
 "error_description": "The access token is not valid"
}

The error_description parameter is OPTIONAL but highly RECOMMENDED to provide a human-readable text
string containing additional information to assist the user in understanding the error that occurred.

The remote service can also define custom error messages by using messages that are not defined in this
specification.

The following table contains definitions for errors that are common to more than one API methods.
Therefore, they’re presented only once in this section instead of being repeated for all API methods.

34 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

Table 3 – Predefined common Error Messages

Error Error Description
invalid_request The request is missing a required parameter, includes an invalid parameter

value, includes a parameter more than once, or is otherwise malformed.
unauthorized_client The client is not authorized to use this method.
access_denied The user, authorization server or remote service denied the request.
unsupported_response_type The authorization server does not support obtaining an authorization code

using this method.
invalid_scope The requested scope is invalid, unknown, or malformed.
server_error The authorization server encountered an unexpected condition that prevented

it from fulfilling the request.
temporarily_unavailable The authorization server is currently unable to handle the request due to a

temporary overloading or maintenance of the server.
expired_token The access or refresh token is expired or has been revoked.
invalid_token The token provided is not a valid OAuth access or refresh token.

11 The remote service APIs
In order to simplify the navigation of this specification, the following table summarizes all the API methods
defined in the present specification. The info method, as defined in section 11.1, SHALL be implemented.
All other methods are OPTIONAL.

Table 4 – API methods summary

API Method Description
info Returns information on the remote service and the list of API methods it has

implemented.
auth/login Authorize the remote service with HTTP Basic or Digest authentication.

auth/revoke Revoke the service access token or refresh token.

credentials/list Returns the list of credentials associated to a user.

credentials/info Returns information on a signing credential, its associated certificate and a
description of the supported authorization mechanism.

credentials/authorize Authorize the access to the credential for signing.

credentials/extendTransaction Extend the validity of a multi-signature transaction.

credentials/sendOTP Start the online OTP mechanism associated to a credential.

signatures/signHash Calculate a raw digital signature from one or more hash values.

signatures/timestamp Return a time stamp token for the input hash value.

oauth2/authorize* Initiate an OAuth 2.0 authorization flow.

oauth2/token* Obtain an OAuth 2.0 access token or refresh token.

oauth2/revoke* Revoke an OAuth 2.0 access token or refresh token.

NOTE 1: Although oauth2/authorize , oauth2/token and oauth2/revoke, as defined in section 8.3,

do not specify regular CSC API methods but rather endpoints managed by the OAuth2
authorization server, they’re listed in Table 4 to provide a complete overview of the
endpoints that can be supported by a remote service conforming to this specification.

35 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

11.1 info
Description: Returns information about the remote service and the list of the API methods it

supports. This method SHALL be implemented by any remote service conforming to
this specification.

Input: This method allows the following parameters:

Parameter Presence Value Description

lang

OPTIONAL String

Request a preferred language of the response to the
remote service, specified according to RFC 5646 [9].
If present, the remote service SHALL provide language-
specific responses using the specified language. If the
specified language is not supported then it SHALL
provide these responses in the language as specified in
the lang output parameter.

Output value: This method returns the following values using the "application/json" format:

Attribute Presence Value Description
specs

REQUIRED String

The version of this specification implemented by the
provider. The format of the string is Major.Minor.x.y,
where Major is a number equivalent to the API version
(e.g. 1 for API v1) and Minor is a number identifying the
version update, while x and y are subversion numbers.
The value corresponding to this specification is “1.0.3.0”.

name REQUIRED String The commercial name of the remote service. The
maximum size of the string is 255 characters.

logo

REQUIRED String

The URI of the image file containing the logo of the
remote service which SHALL be published online. The
image SHALL be in either JPEG or PNG format and not
larger than 256x256 pixels.

region
REQUIRED String

The ISO 3166-1 [22] Alpha-2 code of the Country where
the remote service provider is established (e.g. ES for
Spain).

lang REQUIRED String The language used in the responses, specified according
to RFC 5646 [9].

description
REQUIRED String

A free form description of the remote service in the lang
language. The maximum size of the string is 255
characters.

authType

REQUIRED Array of String

One or more values corresponding to the service
authorization mechanisms supported by the remote
service to authorize the access to the API:
• “external”: in case the authorization is managed

externally (e.g. using a VPN or a private LAN).
• “TLS”: in case the authorization is provided by means

of TLS client certificate authentication.
• “basic”: in case of HTTP Basic Authentication.
• “digest”: in case of HTTP Digest Authentication.
• “oauth2code”: in case of OAuth 2.0 with

authorization code flow.
• “oauth2client”: in case of OAuth 2.0 with client

credentials flow.
oauth2

REQUIRED
Conditional String

The base URI of the OAuth 2.0 authorization server
endpoint supported by the remote service for service
authorization and/or credential authorization. The
parameter SHALL be present in any of the following
cases:

36 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

• The authType parameter contains “oauth2code” or
“oauth2client”;

• The remote service supports the value “oauth2code”
for the authMode parameter returned by
credentials/info, as specified in section 11.5.

This URI SHALL be combined with the OAuth 2.0
endpoints described in Section 8.3.

methods
REQUIRED Array of String

The list of names of all the API methods described in this
specification that are implemented and supported by
the remote service.

NOTE 1: info is a mandatory API method, so it MAY be excluded from the list of API method names

returned by the methods parameter.
The endpoints oauth2/authorize , oauth2/token and oauth2/revoke, as defined in section
8.3, do not specify regular API methods but rather endpoints managed by the OAuth2
authorization server, therefore they MAY be excluded from the list of API method names
returned by the methods parameter.

Sample Request

POST /csc/v1/info HTTP/1.1
Host: service.domain.org
Content-Type: application/json

{}

cURL example

curl -i -X POST
 -H "Content-Type: application/json"
 -d '{}'
https://service.domain.org/csc/v1/info

Sample Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8

{
 "specs": "1.0.3.0",
 "name": "ACME Trust Services",
 "logo": "https://service.domain.org/images/logo.png",
 "region": "IT",
 "lang": "en-US",
 "description": "An efficient remote signature service",
 "authType": ["basic", "oauth2code"],
 "oauth2": "https://www.domain.org/",
 "methods": ["auth/login", "auth/revoke", "credentials/list",
 "credentials/info", "credentials/authorize", "credentials/sendOTP",
 "signatures/signHash"]
}

37 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

11.2 auth/login
Description: Obtain an access token for service authorization from the remote service using HTTP

Basic Authentication or HTTP Digest authentication, as defined in RFC 7235 [2], using
the userID and password assigned to the user. These authentication factors SHALL be
passed directly in the HTTP header as an authorization grant to obtain a service access
token to use for the subsequent API requests within the same session.
The OPTIONAL rememberMe parameter can be used, under the control of the user, in
order to extend a successful authentication for subsequent sessions and to avoid the
user to authenticate again within a predefined period of time. In this case, a refresh
token will be obtained, which can be used in the refresh_token parameter in
subsequent calls as an alternative to passing userID and password again for obtaining a
new access token.

NOTE 1: The RECOMMENDED mechanism for service authorization is OAuth 2.0 (see section 8.3).
HTTP Basic Authentication is an unsafe mechanism and therefore it SHOULD NOT be used,
especially by signature application running as a service. It should only be used when there is
a high degree of trust between the user and the signature application and when other
authorization types like OAuth 2.0 are not available. This method may also be deprecated in
future releases of this specification.

Input: The userID and password strings SHALL be encoded as defined in RFC 7235 [2] and
provided in the HTTP Authorization header. If available, a refresh token MAY be
alternatively used to re-authenticate the user after an access token has expired. This
method allows the following parameters:

Parameter Presence Value Description
refresh_token

REQUIRED
Conditional String

The long-lived refresh token returned from a previous
call to this method with HTTP Basic Authentication. This
MAY be used as an alternative to the Authorization
header to reauthenticate the user according to the
method described in RFC 6749 [11] par. 1.5. In such case
the encoded userId and password SHALL not be
provided in the HTTP Authorization header.
NOTE: This refresh token MAY not be compatible with
refresh tokens obtained by means of OAuth 2.0
authorization (see oauth2/token in section 8.3.3).

rememberMe

OPTIONAL Boolean

A boolean value typically corresponding to an option
that the user may activate during the authentication
phase to "stay signed in" and maintain a valid
authentication across multiple sessions:
• “true”: if the remote service supports user

reauthentication, a refresh_token will be returned
and the signature application may use it on a
subsequent call to this method instead of passing an
Authorization header.

• “false”: a refresh_token will not be returned.
If the parameter is omitted, it will default to “false”.
This mechanism is based on the method described in
RFC 6749 [11] par. 1.5.

clientData
 OPTIONAL String The clientData as defined in the Input parameter table

in section 8.3.2.

Output value: This method returns the following values using the "application/json" format:

38 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

Attribute Presence Value Description
access_token

REQUIRED String

The short-lived service access token used to authenticate
the subsequent API requests within the same session.
This token SHALL be used as the value of the
“Authorization: Bearer” in the HTTP header of the API
requests. When receiving an API call with an expired
token, the remote service SHALL return an error and
require a new auth/login request.

refresh_token

OPTIONAL
Conditional String

The long-lived refresh token used to re-authenticate the
user on the subsequent session. The value is returned if
the rememberMe parameter in the request is “true” and
the remote service supports user reauthentication.
This mechanism is based on the method described in RFC
6749 [11] par. 1.5.
NOTE: This refresh_token MAY not be compatible with
refresh tokens obtained by means of OAuth 2.0
authorization.

expires_in OPTIONAL Number The lifetime in seconds of the service access token. If
omitted, the default expiration time is 3600 (1 hour).

NOTE 2: Access tokens and refresh tokens are credentials used to access protected resources.

These tokens are strings representing a service authorization issued to the client. The
strings MAY represent specific authorization criteria, but they SHOULD be opaque to the
client.

NOTE 3: An existing refresh token MAY be automatically revoked if the user to whom it was issued
performs a new service authorization with the rememberMe parameter set to “true”. It’s
up to the remote service to support a single or multiple refresh tokens per user.

NOTE 4: The lifetime of the refresh_token is determined by the RSSP.

Error Case Status Code Error Error Description
The authorization header
does not match the basic
HTTP authentication pattern
(“Basic [base64]”) - if refresh
token is not present

401
(unauthorized) invalid_request

Malformed authentication parameter.

Decoded credentials are not
in the form
“username:password”

400
(bad request) invalid_request

Malformed username-password.

Invalid refresh_token
parameter format

400
(bad request) invalid_request Invalid string parameter: refresh_token

Invalid refresh_token value 400
(bad request) invalid_request Invalid refresh_token

Authentication error – login
failed

400
(bad request) authentication_error An error occurred during authentication process

39 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

Sample Request

POST /csc/v1/auth/login HTTP/1.1
Host: service.domain.org
Authorization: Basic Y2xpZW50X2lkOmNsaWVudF9zZWNyZXQ=
Content-Type: application/json

{
 "rememberMe": true
}

cURL example

curl -i -X POST
 -H "Content-Type: application/json"
 -H "Authorization: Basic Y2xpZW50X2lkOmNsaWVudF9zZWNyZXQ="
 -d '{"rememberMe": true}'
https://service.domain.org/csc/v1/auth/login

Sample Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8

{
 "access_token": "4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA",
 "refresh_token": "_TiHRG-bA-H3XlFQZ3ndFhkXf9P24/CKN69L8gdSYp5_pw",
 "expires_in": 3600
}

40 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

11.3 auth/revoke
Description: Revoke a service access token or refresh token that was obtained from the remote

service or an associated authorization server. The revocation process is aligned with
the OAuth 2.0 revocation mechanism described in RFC 7009 [13] and can be applied to
both tokens issued through calls to remote service methods (e.g. auth/login as defined
in section 11.2) and tokens issued as a result of an OAuth 2.0 flow (e.g. oauth2/token
as defined in section 8.3.3). This method MAY be used to enforce the security of the
remote service. When the signature application needs to terminate a session, it is
RECOMMENDED to invoke this method to prevent further access by reusing the token.
This method allows the signature application to invalidate its tokens according to the
following approach:

 If the token passed to the request is a refresh_token, then the authorization server
SHALL invalidate the refresh token and it SHALL also invalidate all access tokens
based on the same authorization grant.

 If the token passed to the request is an access_token, then the authorization server
SHALL invalidate the access token and it SHALL NOT revoke any existing refresh
token based on the same authorization grant.

The invalidation of the token takes place immediately, and the token cannot be used
again after its revocation. As a token issued in the process of credential authorization
is automatically invalidated as soon as its usage limit is reached, a client does not have
to revoke the corresponding token after use. However, a provider SHOULD support the
revocation of such a token before reaching the usage limit.

Input: This method allows the following parameters:

Parameter Presence Value Description
token REQUIRED String The token that the signature application wants to get

revoked.
token_type_hint

OPTIONAL
String

access_token |
refresh_token

An OPTIONAL hint about the type of the token
submitted for revocation. If the parameter is omitted,
the remote service SHOULD try to identify the token
across all the available tokens.

clientData
 OPTIONAL String The clientData as defined in the Input parameter table in

section 8.3.2.

Output: This method has no output values and the response returns “No Content” status.

Error Case Status Code Error Error Description
The authorization header
does not match the pattern
“Bearer [sessionKey]”

400
(bad request) invalid_request

The request is missing a REQUIRED parameter,
includes an invalid parameter value, includes a
parameter more than once, or is otherwise
malformed.

Missing or not String “token”
parameter

400
(bad request) invalid_request Missing (or invalid type) string parameter token

“token_hint” parameter
present, not equal to
“access_token” nor
“refresh_token”

400
(bad request) invalid_request

Invalid string parameter token_type_hint

Invalid access_token or
refresh_token

400
(bad request) invalid_request Invalid string parameter token

41 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

Sample Request

POST /csc/v1/auth/revoke HTTP/1.1
Host: service.domain.org
Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA
Content-Type: application/json

{
 "token": "_TiHRG-bA-H3XlFQZ3ndFhkXf9P24/CKN69L8gdSYp5_pw",
 "token_type_hint": "refresh_token",
 "clientData": "12345678"
}

cURL example

curl -i -X POST
 -H "Content-Type: application/json"
 -H "Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA"
 -d '{"token": "_TiHRG-bA-H3XlFQZ3ndFhkXf9P24/CKN69L8gdSYp5_pw",
 "token_type_hint": "refresh_token",
 "clientData": "12345678"}'
https://service.domain.org/csc/v1/auth/revoke

Sample Response

HTTP/1.1 204 No Content

42 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

11.4 credentials/list
Description: Returns the list of credentials associated with a user identifier. A user MAY have one or

multiple credentials hosted by a single remote signing service provider.
If the user is authenticated directly by the RSSP then the userID is implicit and SHALL
NOT be specified.
This method can also be used in case of a community of users, to let the client retrieve
the list of credentials assigned to a specific user of the community. In this case the
userID SHALL be passed explicitly to retrieve the list of credentialIDs for a specific user.
Managing a community of users that are authenticated by the client using a specific
authentication framework is out of the scope of this specification.

Input: This method allows the following parameters:

Parameter Presence Value Description
userID

REQUIRED
Conditional String

The identifier associated to the identity of the credential
owner. This parameter SHALL NOT be present if the
service authorization is user-specific (see NOTE below).
In that case the userID is already implicit in the service
access token passed in the Authorization header.
If a user-specific service authorization is present, it
SHALL NOT be allowed to use this parameter to obtain
the list of credentials associated to a different user. The
remote service SHALL return an error in such case.

maxResults

OPTIONAL Number

The maximum number of items to return from this call.
In case this parameter is omitted or invalid (e.g. the
value is too big) the remote service SHALL return its own
predefined maximum number of items.

pageToken REQUIRED
Conditional String

An opaque token to retrieve a new page of results. The
parameter is only REQUIRED to retrieve results other
than the first page, based on the value of maxResult.

clientData OPTIONAL String The clientData as defined in the Input parameter table in
section 8.3.2.

NOTE 1: User-specific service authorization include the following authType: “basic”, “digest” and

“oauth2code”. Non-user-specific service authorization include the following authType:
“external”, “TLS” or “oauth2client”.

Output value: This method returns the following values using the "application/json" format:

Attribute Presence Value Description
credentialIDs

REQUIRED Array of String
One or more credentialID(s) associated with the
provided or implicit userID. No more than maxResults
items SHALL be returned.

nextPageToken

OPTIONAL String

The page token required to retrieve the next page of
results. No value SHALL be returned if the remote service
does not suport items pagination or the response relates
to the last page of results.

43 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

Error Case Status Code Error Error Description
The authorization header
does not match the pattern
“Bearer [sessionKey]”

400
(bad request) invalid_request

The request is missing a required parameter,
includes an invalid parameter value, includes a
parameter more than once, or is otherwise
malformed.

Invalid “pageToken” 400
(bad request) invalid_request Invalid parameter pageToken

Not empty “userID”
parameter in case of user-
specific authorization

400
(bad request) invalid_request

userID parameter MUST be null

Invalid “userID” format in
case of no user-specific
authorization

400
(bad request) invalid_request

Invalid parameter userID

Sample Request

POST /csc/v1/credentials/list HTTP/1.1
Host: service.domain.org
Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA
Content-Type: application/json

{
 "maxResults": 10
}

cURL example

curl -i -X POST
 -H "Content-Type: application/json"
 -H "Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA"
 -d '{"maxResults": 10}'
https://service.domain.org/csc/v1/credentials/list

Sample Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8

{
 "credentialIDs": ["GX0112348", "HX0224685"]
}

44 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

11.5 credentials/info
Description: Retrieve the credential and return the main identity information and the public key

certificate or the certificate chain associated to it. If requested, it can also return an
optional information about the authorization mechanism required to authorize the
access to the credential for remote signing.

Input: This method allows the following parameters:

Parameter Presence Value Description
credentialID REQUIRED String The unique identifier associated to the credential.

certificates

OPTIONAL
String

none | single |
chain

Specifies which certificates from the certificate chain
shall be returned in certs/certificates.
• “none”: No certificate SHALL be returned.
• “single”: Only the end entity certificate SHALL be

returned.
• “chain”: The full certificate chain SHALL be returned.
The default value is “single”, so if the parameter is
omitted then the method will only return the end entity
certificate.

certInfo

OPTIONAL Boolean

Request to return various parameters containing
information from the end entity certificate. This is useful
in case the signature application wants to retrieve some
details of the certificate without having to decode it first.
The default value is “false”, so if the parameter is
omitted then the information will not be returned.

authInfo

OPTIONAL Boolean

Request to return various parameters containing
information on the authorization mechanisms supported
by this credential (PIN and OTP groups). The default
value is “false”, so if the parameter is omitted then the
information will not be returned.

lang OPTIONAL Strings The lang as defined in the Input parameter table in
section 11.1.

clientData OPTIONAL String The clientData as defined in the Input parameter table in
section 8.3.2.

Output value: This method returns the following values using the "application/json" format:

Attribute Presence Value Description

description
OPTIONAL String

A free form description of the credential in the lang
language. The maximum size of the string is 255
characters.

key/status

REQUIRED String
enabled | disabled

The status of the signing key of the credential:
• “enabled”: the signing key is enabled and can be

used for signing.
• “disabled”: the signing key is disabled and cannot be

used for signing. This MAY occur when the owner
has disabled it or when the RSSP has detected that
the associated certificate is expired or revoked.

key/algo
REQUIRED Array of String

The list of OIDs of the supported key algorithms. For
example: 1.2.840.113549.1.1.1 = RSA encryption,
1.2.840.10045.4.3.2 = ECDSA with SHA256.

key/len REQUIRED Number The length of the cryptographic key in bits.

key/curve REQUIRED
Conditional String The OID of the ECDSA curve. The value SHALL only be

returned if keyAlgo is based on ECDSA.
cert/status OPTIONAL String The status of validity of the end entity certificate. The

value is OPTIONAL, so the remote service SHOULD only

45 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

valid | expired |
revoked |
suspended

return a value that is accurate and consistent with the
actual validity status of the certificate at the time the
response is generated.

cert/certificates

REQUIRED
Conditional Array of String

One or more Base64-encoded X.509v3 certificates from
the certificate chain. If the certificates parameter is
“chain”, the entire certificate chain SHALL be returned
with the end entity certificate at the beginning of the
array. If the certificates parameter is “single”, only the
end entity certificate SHALL be returned. If the
certificates parameter is “none”, this value SHALL NOT
be returned.

cert/issuerDN
REQUIRED
Conditional String

The Issuer Distinguished Name from the X.509v3 end
entity certificate as UTF-8-encoded character string
according to RFC 4514 [4]. This value SHALL be returned
when certInfo is “true”.

cert/serialNumber REQUIRED
Conditional String

The Serial Number from the X.509v3 end entity
certificate represented as hex-encoded string format.
This value SHALL be returned when certInfo is “true”.

cert/subjectDN
REQUIRED
Conditional String

The Subject Distinguished Name from the X.509v3 end
entity certificate as UTF-8-encoded character
string,according to RFC 4514 [4]. This value SHALL be
returned when certInfo is “true”.

cert/validFrom

REQUIRED
Conditional String

The validity start date from the X.509v3 end entity
certificate as character string, encoded as
GeneralizedTime (RFC 5280 [8]) (e.g.
“YYYYMMDDHHMMSSZ”). This value SHALL be returned
when certInfo is “true”.

cert/validTo

REQUIRED
Conditional String

The validity end date from the X.509v3 end enity
certificate as character string, encoded as
GeneralizedTime (RFC 5280 [8]) (e.g.
“YYYYMMDDHHMMSSZ”). This value SHALL be returned
when certInfo is “true”.

authMode

REQUIRED
String

implicit | explicit |
oauth2code

Specifies one of the authorization modes. For more
information also see section 8.2:
• “implicit”: the authorization process is managed by

the remote service autonomously. Authentication
factors are managed by the RSSP by interacting
directly with the user, and not by the signature
application.

• “explicit”: the authorization process is managed by
the signature application, which collects
authentication factors like PIN or One-Time
Passwords (OTP).

• “oauth2code”: the authorization process is managed
by the remote service using an OAuth 2.0
mechanism based on authoritzation code as
described in Section 1.3.1 of RFC 6749 [11].

SCAL

OPTIONAL String
1 | 2

Specifies if the RSSP will generate for this credential a
signature activation data (SAD) that contains a link to the
hash to-be-signed:
• “1”: The hash to-be-signed is not linked to the

signature activation data.
• “2”: The hash to-be-signed is linked to the signature

activation data.
This value is OPTIONAL and the default value is “1”.
NOTE: As decribed in section 8.2, one difference
between SCAL1 and SCAL2, as described in CEN TS 119
241-1 [i.5], is that for SCAL2, the signature activation
data needs to have a link to the data to-be-signed. The
value “2” only gives information on the link between the
hash and the SAD, it does not give information if a full

46 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

SCAL2 as described in CEN TS 119 241-1 [i.5] is
implemented.

PIN/presence REQUIRED
Conditional

String
true | false |

optional

Specifies if a text-based PIN is required, forbidden, or
optional. This value SHALL be present only when
authMode is “explicit”.

PIN/format

REQUIRED
Conditional

String
A | N

The data format of the PIN string:
• “A”: the PIN string contains alphanumeric text

and/or symbols like “-.%!$@#+”.
• “N”: the PIN string only contains numeric text.
This value SHALL be present only when authMode is
“explicit” and PIN/presence is not “false”.
NOTE: The size of the expected PIN is not specified, since
this information could help an attacker in performing
guessing attacks.

PIN/label

OPTIONAL
Conditional String

A label for the data field used to collect the PIN in the
user interface of the signature application, in the
language specified in the lang parameter. This valuer
MAY be present only when authMode is “explicit” and
PIN/presence is not “false”. The maximum size of the
string is 255 characters.

PIN/description

OPTIONAL
Conditional String

A free form description of the PIN in the language
specified in the lang parameter. This value MAY be
present only when authMode is “explicit” and
PIN/presence is not “false”. The maximum size of the
string is 255 characters.

OTP/presence REQUIRED
Conditional

String
true | false |

optional

Specifies if a text-based One-Time Password (OTP) is
required, forbidden, or optional. This value SHALL be
present only when authMode is “explicit”.

OTP/type

REQUIRED
Conditional

String
offline | online

The type of the OTP:
• “offline”: The OTP is generated offline by a dedicated

device and does not require the client to invoke the
credentials/sendOTP method.

• “online”: The OTP is generated online by the remote
service when the client invokes the
credentials/sendOTP method.

This value SHALL be present only when authMode is
“explicit” and OTP/presence is not “false”.

OTP/format

REQUIRED
Conditional

String
A | N

The data format of the OTP string:
• “A”: the OTP string contains alphanumeric text

and/or symbols like “-.%!$@#+”.
• “N”: the OTP string only contains numeric text.
This value SHALL be present only when authMode is
“explicit” and OTP/presence is not “false”.

OTP/label

OPTIONAL
Conditional String

A label for the data field used to collect the OTP in the
user interface of the signature application, in the
language specified in the lang parameter. This value
MAY be present only when authMode is “explicit” and
OTP/presence is not “false”. The maximum size of the
string is 255 characters.

OTP/description

OPTIONAL
Conditional String

A free form description of the OTP mechanism in the
language specified in the lang parameter. This value
MAY be present only when authMode is “explicit” and
OTP/presence is not “false”. The maximum size of the
string is 255 characters.

OTP/ID REQUIRED
Conditional String

The identifier of the OTP device or application. This value
SHALL be present only when authMode is “explicit” and
OTP/presence is not “false”.

OTP/provider OPTIONAL
Conditional String

The provider of the OTP device or application. This value
MAY be present only when authMode is “explicit” and
OTP/presence is not “false”.

47 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

multisign

REQUIRED Number
≥ 1

A number equal or higher to 1 representing the
maximum number of signatures that can be created with
this credential with a single authorization request (e.g.
by calling credentials/signHash method, as defined in
section 11.9, once with multiple hash values or calling it
multiple times). The value of numSignatures specified in
the authorization request SHALL NOT exceed the value
of this value.

lang OPTIONAL String The lang as defined in the Output parameter table in
section 11.1.

Error Case Status Code Error Error Description

The authorization header
does not match the pattern
“Bearer [sessionKey]”

400
(bad request) invalid_request

The request is missing a required parameter,
includes an invalid parameter value, includes a
parameter more than once, or is otherwise
malformed.

Missing or not String
“credentialID” parameter

400
(bad request) invalid_request Missing (or invalid type) string parameter

credentialID
Invalid “credentialID”
parameter

400
(bad request) invalid_request Invalid parameter credentialID

Invalid “certificates”
parameter

400
(bad request) invalid_request Invalid parameter certificates

Sample Request

POST /csc/v1/credentials/info HTTP/1.1
Host: service.domain.org
Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA
Content-Type: application/json

{
 "credentialID": "GX0112348",
 "certificates": "chain",
 "certInfo": true,
 "authInfo": true
}

cURL example

curl -i -X POST
 -H "Content-Type: application/json"
 -H "Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA"
 -d '{"credentialID": "GX0112348",
 "certificates": "chain",
 "certInfo": true,
 "authInfo": true }'
https://service.domain.org/csc/v1/credentials/info

48 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

Sample Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8

{
 "key":
 {
 "status": "enabled",
 "algo": ["1.2.840.113549.1.1.1", "0.4.0.127.0.7.1.1.4.1.3"],
 "len": 2048
 },
 "cert":
 {
 "status": "valid",
 "certificates":
 [
 "<Base64-encoded_X.509_end_entity_certificate>",
 "<Base64-encoded_X.509_intermediate_CA_certificate>",
 "<Base64-encoded_X.509_root_CA_certificate>"
],
 "issuerDN": "<X.500_issuer_DN_printable_string>",
 "serialNumber": "5AAC41CD8FA22B953640",
 "subjectDN": "<X.500_subject_DN_printable_string>",
 "validFrom": "20180101100000Z",
 "validTo": "20190101095959Z"
 },
 "authMode": "explicit",
 "PIN":
 {
 "presence": "true",
 "format": "N",
 "label": "PIN",
 "description": "Please enter the signature PIN"
 },
 "OTP":
 {
 "presence": "true",
 "type": "offline",
 "ID": "MB01-K741200",
 "provider": "totp",
 "format": "N",
 "label": "Mobile OTP",
 "description": "Please enter the 6 digit code you received by SMS"
 },
 "multisign": 5,
 "lang": "en-US"
}

49 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

11.6 credentials/authorize
Description: Authorize the access to the credential for remote signing, according to the

authorization mechanisms associated to it. This method returns the Signature
Activation Data (SAD) required to authorize the signatures/signHash method, as
defined in section 11.9.

PIN and/or OTP values collected from the user SHALL be included in the request
according to the requirements specified by the credentials/info method, as defined in
section 11.5.
This method SHALL be used in case of “explicit” authorization. This method SHALL also
be used in case of “implicit” authorization, to trigger the authorization mechanism
managed by the remote service. This method SHALL NOT be used in case of “oauth2”
credential authorization; instead, any of the available OAuth 2.0 authorization
mechanisms SHALL be used.

The numSignatures parameter SHALL indicate the total number of signatures to
authorize. In case of multi-signature transactions where the signatures/signHash
method is invoked multiple times, the signature application SHALL obtain a new SAD
by invoking the credentials/extendTransaction method, as defined in section 11.7,
before the current SAD expires. In such cases the hashes to be signed may not all be
available when the authorization is performed, for example in case of multiple
signatures applied to a PDF file with a single credential. Further hashes should then be
passed as an input to credentials/extendTransaction to make the SAD calculation
dependent on the data to be signed. This approach may break the support of SCAL 2
requirements, therefore a remote signing service MAY fail if the hash parameter does
not contain a number of hash values corresponding to the value in numSignatures.

Input: This method allows the following parameters:

Parameter Presence Value Description
credentialID REQUIRED String The credentialID as defined in the Input parameter table

in section 11.5.
numSignatures

REQUIRED Number

The number of signatures to authorize. Multi-signature
transactions can be obtained by using a combination of
passing an array of hash values and calling the
signatures/signHash method, as defined in section 11.9,
multiple times.

hash

REQUIRED
Conditional Array of String

One or more Base64-encoded hash values to be signed.
It allows the server to bind the SAD to the hash(es), thus
preventing an authorization to be used to sign a different
content. If the SCAL parameter returned by
credentials/info method, as defined in section 11.5, for
the current credentialID is “2” the hash parameter SHALL
be used and the number of hash values SHOULD
correspond to the value in numSignatures. If the SCAL
parameter is “1”, the hash parameter is OPTIONAL.

PIN REQUIRED
Conditional String

The PIN provided by the user. It SHALL be used only
when authMode from credentials/info is “explicit” and
PIN/presence is not “false”.

OTP
REQUIRED
Conditional String

The OTP provided by the user. It SHALL be used only
when authMode from credentials/info method, as
defined in section 11.5, is “explicit” and OTP/presence is
not “false”.

50 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

description

OPTIONAL String

A free form description of the authorization transaction
in the lang language. The maximum size of the string is
500 characters. It can be useful when authMode from
credentials/info method, as defined in section 11.5, is
“implicit” to provide some hints about the occurring
transaction.

clientData OPTIONAL String The clientData as defined in the Input parameter table in
section 8.3.2.

Output value: This method returns the following values using the "application/json" format:

Attribute Presence Value Description
SAD

REQUIRED String
The Signature Activation Data (SAD) to be used as input
to the signatures/signHash method, as defined in
section 11.9.

expiresIn OPTIONAL Number The lifetime in seconds of the SAD. If omitted, the
default expiration time is 3600 (1 hour).

Error Case Status Code Error Error Description
The authorization header
does not match the pattern
“Bearer [sessionKey]”

400
(bad request) invalid_request

The request is missing a required parameter,
includes an invalid parameter value, includes a
parameter more than once, or is otherwise
malformed.

Missing or not String
“credentialID” parameter

400
(bad request) invalid_request Missing (or invalid type) string parameter

credentialID
Invalid “credentialID”
parameter

400
(bad request) invalid_request Invalid parameter credentialID

Signing key for “credentialID”
is disabled

400
(bad request) invalid_request The credential identified by credentialID is

disabled
Missing or not integer
“numSignatures” parameter

400
(bad request) invalid_request Missing (or invalid type) integer parameter

numSignatures
“numSignatures” < 1 400

(bad request) invalid_request Invalid value for parameter numSignatures

“numSignatures” >
“multisign”

400
(bad equrest) Invalid_request Numbers of signatures is too high

Invalid OTP 400
(bad request) invalid_otp The OTP is invalid

Invalid PIN 400
(bad request) invalid_pin The PIN is invalid

PIN locked 400
(bad request) invalid_request PIN locked

OTP locked 400
(bad request) invalid_request OTP locked

NOTE 1: In case a wrong PIN or OTP is provided several times, the remote signing service MAY lock

the credential or the usage of the PIN or OTP. The policy adopted by the RSSP in this regard
is out of the scope of this specification.

51 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

Sample Request

POST /csc/v1/credentials/authorize HTTP/1.1
Host: service.domain.org
Content-Type: application/json
Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA

{
 "credentialID": "GX0112348",
 "numSignatures": 2,
 "hash":
 [
 "sTOgwOm+474gFj0q0x1iSNspKqbcse4IeiqlDg/HWuI=",
 "c1RPZ3dPbSs0NzRnRmowcTB4MWlTTnNwS3FiY3NlNEllaXFsRGcvSFd1ST0="
],
 "PIN": "12345678",
 "OTP": "738496",
 "clientData": "12345678"
}

cURL example

curl -X POST
 -H "Content-Type: application/json"
 -H "Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA"
 -d '{ "credentialID": "GX0112348",
 "numSignatures": 2,
 "hash": ["sTOgwOm+474gFj0q0x1iSNspKqbcse4IeiqlDg/HWuI=",
 "c1RPZ3dPbSs0NzRnRmowcTB4MWlTTnNwS3FiY3NlNEllaXFsRGcvSFd1ST0="
],
 "PIN": "12345678",
 "OTP": "738496",
 "clientData": "12345678" }'
https://service.domain.org/csc/v1/credentials/authorize

Sample Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8

{
 "SAD": "_TiHRG-bAH3XlFQZ3ndFhkXf9P24/CKN69L8gdSYp5_pw"
}

52 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

11.7 credentials/extendTransaction
Description: Extends the validity of a multi-signature transaction authorization by obtaining a new

Signature Activation Data (SAD). This method SHALL be used in case of multi-signature
transaction when the API method signatures/signHash, as defined in section 11.9, is
invoked multiple times with a single credential authorization event.
It can also be used to renew a SAD, before it expires, when signature operations take
longer than allowed by the expiresIn value. Expired SAD cannot be extended.

The RSSP SHALL invalidate the SAD when the number of authorized signatures,
specified with numSignatures in the credential authorization event, has been created.

Input: This method allows the following parameters:

Parameter Presence Value Description
credentialID REQUIRED String The credentialID as defined in the Input parameter table

in section 11.5.
hash

REQUIRED
Conditional Array of String

One or more Base64-encoded hash values to be signed.
It allows the server to bind the new SAD to the hash,
thus preventing an authorization to be used to sign a
different content. It SHALL be used if the SCAL
parameter returned by credentials/info, as defined in
section 11.5, for the current credentialID is “2” ,
otherwise it is OPTIONAL.

SAD

REQUIRED String

The current unexpired Signature Activation Data. This
token is returned by the credentials/authorize, as
defined in section 11.6, or by the previous call to
credentials/extendTransaction.

clientData OPTIONAL String The clientData as defined in the Input parameter table in
section 8.3.2.

NOTE 1: This method can be used for applying multiple signatures to a PDF document from a single

user, e.g. to sign separately different parts of the document, with a single credential
authorization event. The PDF standard adopts nested signatures so the hashes for multiple
signatures can only be calculated after the previous signature has been created. This
method allows to calculate a new SAD based on new hash values that were not available
when the credential authorization event occurred. The sequence diagram in section 13.8
shows this use case.

Output value: This method returns the following values using the "application/json" format:

Attribute Presence Value Description

SAD REQUIRED String The new Signature Activation Data required to sign
multiple times with a single authorization.

expiresIn OPTIONAL Number The lifetime in seconds of the SAD. If omitted, the
default expiration time is 3600 (1 hour).

Error Case Status Code Error Error Description

The authorization header
does not match the pattern
“Bearer [sessionKey]”

400
(bad request) invalid_request

The request is missing a REQUIRED parameter,
includes an invalid parameter value, includes a
parameter more than once, or is otherwise
malformed.

53 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

Sample Request

POST /csc/v1/credentials/extendTransaction HTTP/1.1
Host: service.domain.org
Content-Type: application/json
Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA

{
 "credentialID": "GX0112348",
 "hash": ["WlTTnNwS3FiY3NlNEllaXFsRGcvSFd1ST0="],
 "SAD": "_TiHRG-bAH3XlFQZ3ndFhkXf9P24/CKN69L8gdSYp5_pw",
 "clientData": "12345678"
}

cURL example

curl -X POST
 -H "Content-Type: application/json"
 -H "Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA"
 -d '{ "credentialID": "GX0112348",
 "hash": ["WlTTnNwS3FiY3NlNEllaXFsRGcvSFd1ST0="],
 "SAD": "_TiHRG-bAH3XlFQZ3ndFhkXf9P24/CKN69L8gdSYp5_pw",
 "clientData": "12345678" }'
https://service.domain.org/csc/v1/credentials/extendTransaction

Sample Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8

{
 "SAD": "1/UsHDJ98349h9fgh9348hKKHDkHWVkl/8hsAW5usc8_5="
}

54 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

11.8 credentials/sendOTP
Description: Start an online One-Time Password (OTP) generation mechanism associated with a

credential and managed by the remote service. This will generate a dynamic one-time
password that will be delivered to the user who owns the credential through an agreed
communication channel managed by the remote service (e.g. SMS, email, app, etc.).

This method SHOULD only be used with “online” OTP generators. In case of “offline”
OTP, the signature application SHOULD NOT invoke this method because the OTP can
be generated autonomously by the user.

Input: This method allows the following parameters:

Parameter Presence Value Description

credentialID REQUIRED String The credentialID as defined in the Input parameter table
in section 11.5.

clientData OPTIONAL String The clientData as defined in the Input parameter table in
section 8.3.2.

Output: This method has no output values and the response returns “No Content” status.

Error Case Status Code Error Error Description

The authorization header
does not match the pattern
“Bearer [sessionKey]”

400
(bad request) invalid_request

Malformed authroization header.

The “credentialID” parameter
or not of type String

400
(bad request) invalid_request Missing (or invalid type) string parameter

credentialID
Invalid “credentialID”
parameter

400
(bad request) invalid_request Invalid parameter credentialID

OTP locked 400
(bad request) invalid_request OTP locked

NOTE 1: In case a wrong PIN or OTP is provided several times, the remote signing service MAY lock

the credential or the usage of the PIN or OTP. The policy adopted by the RSSP in this regard
is out of the scope of this specification.

55 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

Sample Request

POST /csc/v1/credentials/sendOTP HTTP/1.1
Host: service.domain.org
Content-Type: application/json
Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA

{
 "credentialID": "GX0112348",
 "clientData": "12345678"
}

cURL example

curl -X POST
 -H "Content-Type: application/json"
 -H "Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA"
 -d '{ "credentialID": "GX0112348",
 "clientData": "12345678" }'
https://service.domain.org/csc/v1/credentials/sendOTP

Sample Response

HTTP/1.1 204 No Content

56 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

11.9 signatures/signHash
Description: Calculate the remote digital signature of one or multiple hash values provided in input.

This method requires credential authorization in the form of Signature Activation Data
(SAD). The signature application SHALL first pass to this method the SAD obtained from
either a credential/authorize, as defined in section 11.6, or a oauth2/authorize calls,
as defined in section 8.3.2, depending on the type of supported authorization
mechanisms associated with the credential.

In case of multi-signature transactions, the SAD SHALL be updated with
credentials/extendTransaction, as defined in section 11.7, every time this method is
invoked until the maximum number of authorized signatures has been generated.

Input: This method allows the following parameters:

Parameter Presence Value Description
credentialID REQUIRED String The credentialID as defined in the Input parameter table

in section 11.5.
SAD REQUIRED String The Signature Activation Data returned by the Credential

Authorization methods.
hash

REQUIRED Array of String
One or more hash values to be signed. This parameter
SHALL contain the Base64-encoded raw message
digest(s).

hashAlgo

REQUIRED
Conditional String

The OID of the algorithm used to calculate the hash
value(s). This parameter SHALL be omitted or ignored if
the hash algorithm is implicitly specified by the signAlgo
algorithm. Only hashing algorithms as strong or stronger
than SHA256 SHALL be used. The hash algorithm
SHOULD follow the recommendations of ETSI TS 119 312
[21].

signAlgo

REQUIRED String

The OID of the algorithm to use for signing. It SHALL be
one of the values allowed by the credential as returned
in keyAlgo by the credentials/info method, as defined in
section 11.5.

signAlgoParams
REQUIRED
Conditional String

The Base64-encoded DER-encoded ASN.1 signature
parameters, if required by the signature algorithm. Some
algorithms like RSASSA-PSS, as defined in RFC 8917 [18],
may require additional parameters.

clientData OPTIONAL String The clientData as defined in the Input parameter table in
section 8.3.2.

Output value: This method returns the following values using the "application/json" format:

Attribute Presence Value Description
signatures

REQUIRED Array of String

One or more Base64-encoded signed hash(s). In case of
multiple signatures, the signed hashes SHALL be
returned in the same order as the corresponding hashes
provided as an input parameter.

Error Case Status Code Error Error Description
The authorization header
does not match the pattern
“Bearer [sessionKey]”

400
(bad request) invalid_request

The request is missing a required parameter,
includes an invalid parameter value, includes a
parameter more than once, or is otherwise
malformed.

Missing or not String “SAD”
parameter

400
(bad request) invalid_request Missing (or invalid type) string parameter SAD

57 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

Invalid “SAD” parameter 400
(bad request) invalid_request Invalid parameter SAD

Missing or not String
“credentialID” parameter

400
(bad request) invalid_request Missing (or invalid type) string parameter

credentialID
Invalid “credentialID”
parameter

400
(bad request) invalid_request Invalid parameter credentialID

Missing or not Array “hash”
parameter

400
(bad request) invalid_request Missing (or invalid type) array parameter hash

Empty hash parameter 400
(bad request) invalid_request Empty hash array

Invalid Base64 hash element 400
(bad request) invalid_request Invalid Base64 hash string parameter

Unauthorized hash 400
(bad request) Invalid_request Hash is not authorized by the SAD.

Missing or not String
“signAlgo” parameter

400
(bad request) invalid_request Missing (or invalid type) string parameter

signAlgo
Missing or not String
“signAlgoParams” parameter

400
(bad request) invalid_request

Missing (or invalid type) string parameter
signAlgoParams

Missing or not String
“hashAlgo” parameter when
“signAlgo” is equal to
“1.2.840.113549.1.1.1”

400
(bad request) invalid_request

Missing (or invalid type) string parameter
hashAlgo

Invalid “hashAlgo” parameter 400
(bad request) invalid_request Invalid parameter hashAlgo

Invalid “signAlgo” parameter 400
(bad request) invalid_request Invalid parameter signAlgo

When present, invalid
“clientData” format (not
string)

400
(bad request) invalid_request

Invalid parameter clientData

Invalid “hash” length 400
(bad request) invalid_request Invalid digest value length

The OTP used to generate the
“SAD” is invalid

400
(bad request) invalid_otp The OTP is invalid

Expired “SAD” 400
(bad request) invalid_request SAD expired

Expired credential 400
(bad request) invalid_request

Signing certificate
'O=[organization],CN=[common_name]' is
expired.

58 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

Sample Request

POST /csc/v1/signatures/signHash HTTP/1.1
Host: service.domain.org
Content-Type: application/json
Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA

{
 "credentialID": "GX0112348",
 "SAD": "_TiHRG-bAH3XlFQZ3ndFhkXf9P24/CKN69L8gdSYp5_pw",
 "hash":
 [
 "sTOgwOm+474gFj0q0x1iSNspKqbcse4IeiqlDg/HWuI=",
 "c1RPZ3dPbSs0NzRnRmowcTB4MWlTTnNwS3FiY3NlNEllaXFsRGcvSFd1ST0="
],
 "hashAlgo": "2.16.840.1.101.3.4.2.1",
 "signAlgo": "1.2.840.113549.1.1.1",
 "clientData": "12345678"
}

cURL example

curl -X POST
 -H "Content-Type: application/json"
 -H "Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA"
 -d '{ "credentialID": "GX0112348",
 "SAD": "_TiHRG-bAH3XlFQZ3ndFhkXf9P24/CKN69L8gdSYp5_pw",
 "hash": ["sTOgwOm+474gFj0q0x1iSNspKqbcse4IeiqlDg/HWuI=",
 "c1RPZ3dPbSs0NzRnRmowcTB4MWlTTnNwS3FiY3NlNEllaXFsRGcvSFd1ST0="
],
 "hashAlgo": "2.16.840.1.101.3.4.2.1",
 "signAlgo": "1.2.840.113549.1.1.1",
 "clientData": "12345678"}'
https://service.domain.org/csc/v1/signatures/signHash

Sample Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8

{
 "signatures":
 [
 "KedJuTob5gtvYx9qM3k3gm7kbLBwVbEQRl26S2tmXjqNND7MRGtoew==",
 "Idhef7xzgtvYx9qM3k3gm7kbLBwVbE98239S2tm8hUh85KKsfdowel=="
]
}

59 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

11.10 signatures/timestamp
Description: Generate a time-stamp token for the input hash value. The time-stamp token can be

generated directly by the RSSP or by a Time Stamping Authority connected to it.

The reason to implement this method instead of providing time-stamp services
through widespread RFC 3161 [2] protocols directly is to facilitate the creation of long-
term validation digital signatures and to support billing operations. In both cases, the
RSSP provider can offer pre-configured time-stamp services instead of requiring the
signature application to obtain time-stamp services from a different provider.

Input: This method allows the following parameters:

Parameter Presence Value Description

hash

REQUIRED String

The Base64-encoded hash value to be time stamped. The
remote service SHALL use this value to encode the value
of MessageImprint.hashedMessage as defined in RFC
3161 [2].

hashAlgo

REQUIRED String

The OID of the algorithm used to calculate the hash
value. The remote service SHALL use this value to encode
the value of MessageImprint.hashAlgorithm as defined in
RFC 3161 [2].

nonce
OPTIONAL String

A large random number with a high probability that it is
generated by the signature application only once. The
value SHALL be represented as hex-encoded string.

clientData OPTIONAL String The clientData as defined in the Input parameter table in
section 8.3.2.

NOTE 1: RFC 3161 [2] contains more detailed definitions of time stamp parameters that can be used

in the context of this specification.

Output value: This method returns the following values using the "application/json" format:

Parameter Presence Value Description
timestamp

REQUIRED String

The Base64-encoded time-stamp token as defined in RFC
3161 [2] as updated by RFC 5816 [10]. If the nonce
parameter is included in the request then it SHALL also
be included in the time-stamp token, otherwise the
response SHALL be rejected.

Error Case Status Code Error Error Description

The authorization header
does not match the pattern
“Bearer [sessionKey]”

400
(bad request) invalid_request

The request is missing a required parameter,
includes an invalid parameter value, includes a
parameter more than once, or is otherwise
malformed.

The“hash” parameter is
missing or not of type String.

400
(bad request) invalid_request Missing (or invalid type) string parameter hash

Empty hash parameter 400
(bad request) invalid_request Empty hash parameter

Invalid “hash” length 400
(bad request) invalid_request Invalid digest value length

Invalid Base64 hash element 400
(bad request) invalid_request Invalid Base64 hash string parameter

Invalid “hashAlgo” parameter 400
(bad request) invalid_request Invalid parameter hashAlgo

60 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

Invalid or non-numeric
“nonce” parameter

400
(bad request) invalid_request Invalid parameter nonce

Sample Request

POST /csc/v1/signatures/timestamp HTTP/1.1
Host: service.domain.org
Content-Type: application/json
Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA

{
 "hash": "sTOgwOm+474gFj0q0x1iSNspKqbcse4IeiqlDg/HWuI=",
 "hashAlgo": "2.16.840.1.101.3.4.2.1",
 "clientData": "12345678"
}

cURL example

curl -X POST
 -H "Content-Type: application/json"
 -H "Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA"
 -d '{ "hash": "sTOgwOm+474gFj0q0x1iSNspKqbcse4IeiqlDg/HWuI=",
 "hashAlgo": "2.16.840.1.101.3.4.2.1",
 "clientData": "12345678" }'
https://service.domain.org/csc/v1/signatures/timestamp

Sample Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8

{
 "timestamp":
"MGwCAQEGCSsGAQQB7U8CATAxMA0GCWCGSAFlAwQCAQUABCCrCqnrjH0VxXyQQlfnFJRx1jjrviTs7/
GjKghr2AmluQIIVs5D8OUB4p4YDzIwMTQxMTE5MTEzMjM5WjADAgEBAgkAnWn2SSIWlXk="
}

61 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

12 JSON schema and OpenAPI description
A signature application may want to validate the JSON objects described in this specification, to ensure that
required properties are present and that additional constraints are met. Validation of JSON data is typically
performed by means of a specific JSON Schema.

A JSON Schema is a grammar language for defining the structure, content, and semantics of JSON data
objects. It can specify metadata about the meaning of an object’s properties and values that are valid for
those properties. The JSON Schema is defined at https://json-schema.org .

The JSON schema of the API specification described in this specification is available from the website of the
Cloud Signature Consortium at:
https://cloudsignatureconsortium.org/resources/download-api-specifications/ .

The JSON Schema file contains the definition of all CSC API parameters and the definition of the input and
output objects managed by the CSC API. The following objects are defined:

• input-info: input object for info method
• output-info: output object for info method
• input-auth-login: input object for auth/login method
• output-auth-login: output object for auth/login method
• input-auth-revoke: input object for auth/revoke method
• input-credentials-list: input object for credentials/list method
• output-credentials-list: output object for credentials/list method
• input-credentials-info: input object for credentials/info method
• output-credentials-info: output object for credentials/info method
• input-credentials-authorize: input object for credentials/authorize method
• output-credentials-authorize: output object for credentials/authorize method
• input-credentials-extendTransaction: input object for credentials/extendTransaction method
• output-credentials-extendTransaction: output object for credentials/extendTransaction method
• input-credentials-sendOTP: input object for credentials/sendOTP method
• input-signatures-signhash: input object for signatures/signhash method
• output-signatures-signhash: output object for signatures/signhash method
• input-signatures-timestamp: input object for signatures/timestamp method
• output-signatures-timestamp: output object for signatures/timestamp method

In addition, an OpenAPI 3.0 description file is provided, as defined by the OpenAPI Initiative (OAI)
https://www.openapis.org, containing these JSON Schema definitions together with other information to
fully describe the CSC API protocol. The OpenAPI file contains:

1. A general information about the protocol like, for example, the APIs version, the Cloud Signature
Consortium contact information and the license;

2. Information about the RESTful path URL and an example of server URL access points;
3. Authorization schemas required to access the CSC API;
4. A description of every method of the CSC protocol including input objects and returned HTTP

responses.

The OpenAPI description file can also be used by developers or testers to automatically generate a CSC
compliant server interfaces or client stubs.

https://json-schema.org/
https://cloudsignatureconsortium.org/resources/download-api-specifications/
https://www.openapis.org/

62 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

13 Interaction among elements and components
The building blocks of a remote signature solution interact with the API methods described in this
specification. The following sections describe the sequence diagrams of some of the most common
operations required to obtain a service authorization, credential authorization and to request a remote
signature.

NOTE 1: The sample requests and responses that are provided in the diagrams are only a partial
representation of complete transactions and are aimed at showing the most important
parameters and information. See the example in the previous sections of this specification
for complete and detailed descriptions.

13.1 Remote signing service authorization using Basic Authentication

63 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

13.2 Remote signing service authorization using OAuth2 with Authorization Code
flow

64 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

13.3 Create a remote signature with a credential protected by a PIN

13.4 Create a remote signature with a credential protected by an “online” OTP
(based on SMS)

65 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

13.5 Create a remote signature with a credential protected by OAuth2 with
Authorization Code flow

66 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

13.6 Create a remote signature with a credential protected by implicit authorization

67 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

13.7 Create multiple remote signatures from a list of hash values

68 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

13.8 Create a remote multi-signatures transaction with a PDF document
This diagram shows the case of a PDF document that is signed multiple times by the same signer. A single
credential authorization can be performed to authorize multiple signatures. However only the initial hash
of the document is available at authorization time. A new hash will be generated to calculate the following
signatures. For this reason, the credentials/extendTransaction method is used to supply the new hash to
obtain the SAD to calculate a new signature. See section 11.7 for more information.

69 Cloud Signature Consortium Standard - Remote Signature Protocols and API v1

Cloud Signature Consortium | Rue du Luxembourg 22-24 | B1000 Brussels | Belgium, EU

	Foreword
	Revision history
	Acknowledgements
	Introduction
	Intellectual Property Rights
	Trademark notice
	Essential Patents

	Legal notices
	1 Scope
	2 Interpretation of Requirement Levels
	3 References
	3.1 Normative references
	3.2 Informative references

	4 Terms, definitions and abbreviations
	4.1 Terms and definitions
	4.2 Abbreviations

	5 Conventions
	5.1 Text conventions
	5.2 Base-64

	6 Architectures and use cases
	6.1 Supported architectures

	7 Introduction to the remote service protocols API
	7.1 Format and syntax of the API
	7.2 Remote service base URI
	7.3 Integrity and confidentiality
	7.4 Remote service information
	7.5 clientData parameter

	8 Authentication and authorization
	8.1 Service authorization and authentication
	8.2 Credential authorization
	8.3 OAuth 2.0 Authorization
	8.3.1 Restricted access to authorization servers
	8.3.2 oauth2/authorize (OAuth 2.0 Authorization Code)
	8.3.3 oauth2/token (OAuth 2.0 Token Endpoint)
	8.3.4 oauth2/revoke (OAuth 2.0 Revocation Endpoint)

	9 Creating a remote signature
	10 Error handling
	10.1 Error messages

	11 The remote service APIs
	11.1 info
	11.2 auth/login
	11.3 auth/revoke
	11.4 credentials/list
	11.5 credentials/info
	11.6 credentials/authorize
	11.7 credentials/extendTransaction
	11.8 credentials/sendOTP
	11.9 signatures/signHash
	11.10 signatures/timestamp

	12 JSON schema and OpenAPI description
	13 Interaction among elements and components
	13.1 Remote signing service authorization using Basic Authentication
	13.2 Remote signing service authorization using OAuth2 with Authorization Code flow
	13.3 Create a remote signature with a credential protected by a PIN
	13.4 Create a remote signature with a credential protected by an “online” OTP (based on SMS)
	13.5 Create a remote signature with a credential protected by OAuth2 with Authorization Code flow
	13.6 Create a remote signature with a credential protected by implicit authorization
	13.7 Create multiple remote signatures from a list of hash values
	13.8 Create a remote multi-signatures transaction with a PDF document

		avalle@cloudsignatureconsortium.org
	2019-06-28T10:10:01-0700
	Cloud Signature Consortium VZW

