

 Standard
Architectures, Protocols and
API Specifications for
Remote Signature applications

Public pre-release version 0.1.7.9 rev. PR (2017-02)

All rights reserved – Copyright 2016-2017 Cloud Signature Consortium

Promoters: Adobe Systems, Asseco Data Systems, Certinomis, Cryptolog, D-Trust, Graz University of
Technology, InfoCert, Intarsys Consulting, Intesi Group, Izenpe, SafeLayer Secure Communications,
SwissSign, Unibridge.

2 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

Contents
Foreword ... 4

Revision history ... 4

Acknowledgements ... 4

Introduction .. 5

Legal notices .. 5

1 Scope ... 6

2 Requirements Language ... 7

3 References ... 7

3.1 Normative references ... 7

3.2 Informative references ... 7

4 Terms and definitions ... 8

5 Conventions ... 8

6 Architectures and use cases ... 9

6.1 Supported architectures ... 9

7 Entities and components of a Remote Signature solution ..10

8 Introduction to the Remote Service Protocols API ...11

8.1 Format and syntax of the API ...11

8.2 Remote Service Base URI ...11

8.3 Integrity and confidentiality...11

8.4 Remote Service Information ..12

9 Authentication and authorization ..12

9.1 Service authorization and authentication ..12

9.2 Credential authorization ..13

9.3 OAuth 2.0 Authorization ..14

OAuth 2.0 Authorization Code [oauth2/authorize] ...16

OAuth 2.0 Implicit Grant [oauth2/authorize] ..19

10 Creating a Remote Signature ...22

10.1 Multi-signature Transactions ...22

11 Error handling ...22

11.1 Error messages ..23

12 The Remote Service APIs ...24

info ...25

auth/login ..27

auth/revoke ...29

3 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

oauth2/token ...31

credentials/list ...34

credentials/info ..36

credentials/authorize ...41

credentials/extendTransaction ..43

credentials/sendOTP ..44

signatures/signHash ...45

signatures/timestamp ..47

13 Interaction among elements and components ..49

13.1 Acquire the context of a RSSP ..49

13.2 RSSP service authorization using a username and password ..49

13.3 RSSP service authorization using OAuth2 with Implicit Grant flow ...50

13.4 RSSP service authorization using OAuth2 with Authorization Code flow50

13.5 RSSP service authorization using OAuth2 with Client Credentials flow ...50

13.6 Get the list of credentials available for a group or community of users ..51

13.7 Create a remote signature with a credential protected by an implicit authorization51

13.8 Create a remote signature with a credential protected by a PIN ..52

13.9 Create a remote signature with a credential protected by an “offline” OTP53

13.10 Create a remote signature with a credential protected by an “online” OTP54

13.11 Create a remote signature with a credential protected by PIN and OTP55

13.12 Create a remote signature with a credential protected by a biometric factor56

13.13 Create multiple remote signatures from a list of hash values ...57

13.14 Create a remote multi-signatures transaction ..58

13.15 Create a remote signature with long-term validity profile ..59

4 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

Foreword
This document is a work by members of the Cloud Signature Consortium, a collaborative initiative among
industry and academic organizations for building upon existing knowledge of solutions, architectures and
protocols for Remote Electronic Signatures, also defined as Cloud-based Digital Signatures.

The Cloud Signature Consortium has developed the present specification to make these solutions
interoperable and suitable for uniform adoption in the global market, in particular – but not exclusively – to
meet the requirements of the European Union's Regulation 910/2014 on Electronic Identification and Trust
Services (eIDAS), which formally took effect on 1 July 2016.

Revision history
Version Date Version change details

0.1.7.9-PR 14/02/2017 Public pre-release for comment

Acknowledgements
This work is the result of the contributions of several individuals from the promoting members of the Cloud
Signature Consortium. In particular, the following people have provided a significant contribution to the
drawing up and revision of the present document:

Giuseppe Damiano, Andrea Valle, Luigi Rizzo, Franck Leroy, Andrea Röck, Thomas Pielczyk, Michael Traut,
Jon Ølnes, Peter Lipp, Patrycja Wiktorczyk, Ałła Stoliarowa-Myć, Marcin Szulga, Arno Fiedler, Kapil Khattar,
Meena Muralidharan, Marc Kaufman, Iñigo Barreira, Bernd Wild, Dr. Kim Nguyen, Prof. Reinhard Posch,
Mangesh Bhandarkar, Cornelia Enke, Klaus-Dieter Wirth, Carlos Ares, Giuliana Marzola, Arkadiusz
Lawniczak, Enrico Entschew, Andreas Vollmert, Luca Boldrin, Håvard Grindheim.

5 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

Introduction
For a long time, transactional e-services have been designed for typical end-user devices such as desktop
computers and laptops. Accordingly, existing digital signature solutions are tailored to the characteristics of
these devices as well. This applies to smart card and USB token-based solutions. These traditional signature
solutions implicitly assume that the user accesses e-services from a desktop or laptop computer and in
addition uses a smart card or token to create any required digital signatures. Recently, this assumption is
not valid any longer. During the past few years, smartphones, tablets and other mobile end-user devices
have started to replace desktop and laptops computers.

This situation raises several challenges for e-services: smart cards and tokens cannot be easily connected to
smartphones and other mobile devices, or cannot at all. For instance, smartphones usually do not provide
support for USB devices, which is the typical technology for smart card based solutions.

In this regard, recent regulations in various Regions worldwide – like eIDAS in the European Union – have
introduced the concept of electronic signatures that are created using a “remote signature creation
device”, which means that the signature device is not anymore a personal device under the physical control
of the user, but rather it is replaced by cloud-based services offered and managed by a trusted service
provider.

This is in summary the context of the Cloud Signature Consortium, aimed at defining a common
architecture, building blocks and communication protocols aimed at creating a standard API to integrate
the essential components of a Remote Signature solution established among different service providers
and consumers.

Where the context of the eIDAS Regulation is applicable, this specification, and the term “Remote Signature
solution” herein developed, aim to cover solutions for Remote Electronic Signatures and Remote Electronic
Seals, in the domains of both Qualified and Advanced Electronic Signatures.

Legal notices
The Consortium seeks to promote and encourage broad and open industry adoption of the specifications,
including making available licenses for use under Fair, Reasonable and Non-Discriminatory (FRAND) terms
to non-members of the consortium for adoption in any transactions between individuals, companies,
governmental bodies and other organizations.

The present document does not create legal rights and does not imply that intellectual property rights are
transferred to the recipient or other third parties. The adoption of the specification contained herein does
not constitute any rights of affiliation or membership to the Cloud Signature Consortium.

This document is provided “as is” and the Cloud Signature Consortium and its members are not responsible
for any errors or omissions. Reuse and repurpose of content from the present document are subject to
written authorization from the Cloud Signature Consortium.

The use of the Cloud Signature Consortium Logo is reserved to members of the Cloud Signature
Consortium.

Questions and comments to this document can be sent to ask@cloudsignatureconsoartium.org .

mailto:ask@cloudsignatureconsoartium.org

6 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

1 Scope
When digital signatures are created within a device, the interfaces and functions are standardized, e.g. the
API used by the application program to access the signature creation libraries and the interface to the
smart card or similar device (if a device is used) holding the signing key. When digital signatures move to
the cloud, the functions needed to create a digital signature can be distributed across several service
instances, each carrying out one or more steps in the signature creation process. The interfaces between
such services are however not standardized.

The Cloud Signature Consortium aims to fill this gap in standardization by defining the architectural design,
communication protocols, application programming interfaces, data structures, and technical requirements
needed to establish interoperable solutions for cloud-based digital signatures. While these specifications
are applicable in a wide variety of use cases with different security requirements, the fulfilment of
requirements imposed by the eIDAS Regulation of the EU are particularly addressed, supporting the
creation of “advanced” or “qualified” electronic signatures and electronic seals in the cloud.

This document contains technical specifications that are intended for use by implementers of services for
digital signatures in the cloud and by a variety of applications consuming these services. By implementing
their services according to these specifications, service providers can ensure that services are applicable as
parts of complete digital signature systems in the cloud in a plug and play manner.

The specifications of the Cloud Signing Consortium will be implemented and tested by its members. When
sufficient experience is gained, the consortium aims to submit the specifications for formal standardization
by a European or international standards organization. Existing standards and open specifications are taken
into account by the consortium as far as these are applicable.

The Consortium seeks to promote and encourage broad and open industry adoption of the specifications,
including making available licenses for use under Fair, Reasonable and Non-Discriminatory (FRAND) terms
to non-members of the consortium for adoption in any transactions between individuals, companies,
governmental bodies and other organizations.

The following are out of scope of this specification:

• Policy requirements for (qualified and other) service providers; this is an area of standardization
covered by ETSI.

• Signature and certificate formats; use of the standards specified by ETSI is recommended.
• Signature validation; this will be addressed in future specifications from the Consortium.
• Security evaluation and requirements for hardware components used to hold signing keys (HSM –

hardware security module); this is being standardized by CEN in Europe and FIPS in the USA.
• Internal functionality and internal interfaces in one service provider’s systems.

Note that the current specifications only cover architectures where the signing key is held “in the cloud”,
i.e. by a signature creation device managed by a service provider. Architectures where the signing key is in
the hand of the signer, stored in the user’s device or in an attached smart card or similar, are not covered
as a particular case. The consortium will consider the need for further specifications covering situations
where a user device holding the signing key interacts with cloud services for digital signature creation, e.g.
cloud services may be used for document storage, hash computation, and signature formatting.

7 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

2 Requirements Language
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC
2119.

3 References
3.1 Normative references
The following documents, in whole or in part, are normatively referenced in this specification and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.

< List of Normative references to be completed >

RFC 2119

RFC 2253

RFC 2459

RFC 2617

RFC 3066

RFC 3161

RFC 4627

RFC 5246

RFC 5816

RFC 6749

RFC 6750

ISO 3166-1

3.2 Informative references
The following documents, in whole or in part, are informatively referenced in this specification and may be
a useful contribution for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.

< List of Informative references to be completed >

RFC 3447

eiDAS Regulation n. 910/2014

CEN EN 419 241-1

ETSI SR 019 020

8 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

4 Terms and definitions
For the purposes of this document, the following terms and definitions apply.

authentication factor: data that represents some secure information used to identify or authenticate a
user, for example a password or PIN.

credential: cryptographic object and related data used to support remote digital signatures over the
Internet. Consists of the combination of a public/private key pair (also named “signing key” in CEN EN 419
241-1) and a X.509 public key certificate managed by a remote signing service provider on behalf of a user.

HSM: Hardware Security Module

Remote Service: service implementing the API described in this specification and delivered on the Internet.

Remote Signing Service Provider (RSSP): service provider managing a set of credentials on behalf of
multiple users and allowing them to create a remote signature with a stored credential.

NOTE: A remote signing service provider typically operates an HSM (or functionally equivalent multi-user
secure device) and an authentication service. It manages the users and provides a signing service
that can be accessed over the Internet by means of the API described in this specification.

RSCD: Remote Signature Creation Device

SAD: Signature Activation Data

secure element: equivalent to authentication factor.

signature application: client application or service calling the RSSP to create a remote signature.

signature application provider: service provider managing a signature application and offering it as a
service over the Internet or other communication channel.

signature creation service provider (SCSP): equivalent to remote signing service provider (RSSP).

signing identity: equivalent to credential.

5 Conventions
This document uses the following text conventions to help identify various types of information.

Text convention Example
The pipe character (|) indicates a possible value for
selection or outcome and shall be interpreted as “or”. YES | NO

Text shown with Courier font is example code. POST /credentials/info HTTP/1.1
Text shown with bold within text paragraphs indicate
the name of an API method. credentials/list

Text shown with italic within text paragraphs indicate
the name of an API input or output parameter. access_token

9 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

6 Architectures and use cases
The present document and the protocols defined herein aim to support different use cases. However, they
focus on the scenario of remote signing defined for example as “the creation of remote electronic
signatures, where the electronic signature creation environment is managed by a trust service provider on
behalf of the signatory” [EU Regulation 910/2014, whereas §52].

This means that other scenarios for signing in distributed environments assisted by remote servers – like
those described in ETSI SR 019 020 (“Standards for AdES digital signatures in mobile and distributed
environment”) – are not covered in the present version of this specification. In particular, use cases where
the signing key is contained within a signer's personal device are not covered: for example, signing a
document located on a server with a private key contained in a mobile SIM card, or in a cryptographic
device connected to a personal computer. These are relevant use cases, although not fitting in the core
definition of “remote signature”, so they may be specifically covered in future updates of the specification.

6.1 Supported architectures
The present document focuses on the following three types of architecture:

A. A signature application that is connected to a Remote Signing Service Provider hosting the Remote
Signature Creation Device and to another Trust Service Provider providing CA/RA/TSA services;

B. A signature application that is connected to a Remote Signing Service Provider hosting the Remote
Signature Creation Device and also providing CA/RA/TSA services;

C. A signature application provider that is hosting the Remote Signature Creation Device and that is
connected to a Trust Service Provider providing CA/RA/TSA services.

<The following diagrams will be updated>

10 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

NOTE: In case the signature application provider hosts the Remote Signature Creation Device and also
provides CA/RA/TSA services, then all the protocols described herein would only apply to
communications among “internal” building blocks of the provider, and would not be exposed
to additional providers or consumers. This may reduce the need for interoperability that this
specification aims at achieving, but such provider could still obtain a benefit from
implementing these APIs.

7 Entities and components of a Remote Signature solution
The architectures for Remote Signature solutions considered in this specification are based on elements,
functional components and building blocks defined as follows:

<List to be reviewed and completed with additional descriptions>

CAS: Credential Authorization Service

RSCD: Remote Signature Creation Device

RSS: Remote Signing Service

SA: Signature Application

SAM: Signature Activation Module

SCA: Signature Creation Application

SSA: Server Signing Application

11 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

8 Introduction to the Remote Service Protocols API
An Application Programming Interface (API) is the way Web applications and services talk to each other.
Technically speaking, an API is a set of programming instructions for accessing a Web-based software
application or service. This specification is intended for use as an interface by software components to
communicate with one another. It is important to note that an API is a software-to-software programming
interface; APIs enable applications and services to talk to each other without any user intervention.

The Remote Signature Protocols API allows a signature application to communicate with a remote service
via the Internet by leveraging a sequence of calls to methods. The API is a programming interface, defining
how two entities communicate, and the back and forth calls constitute the communication protocols
between the applications. The design goal is to provide a simple and consistent API.

8.1 Format and syntax of the API
This specification defines Web services APIs that are based on technical standards and protocols such as
HTTP and JSON. This API uses HTTP POST requests with JSON payload and JSON responses. JSON is an open-
standard media type format as defined by RFC 4627 that uses human-readable text to transmit data objects
consisting of attribute-value pairs. These properties make JSON an ideal data-interchange language which is
used as the most common data format for asynchronous communications.

The functions offered by the Remote Service are represented by HTTP RPC endpoints accepting arguments
as JSON in the request body and returning results as JSON in the response body. For this reason, the HTTP
header of the invocation method shall include a Content-Type: application/json header.

8.2 Remote Service Base URI
The Remote Service Base URI defines the style and format of the HTTP endpoint URI of a Remote Service
conforming to this specification.

The Base URI contains the version number of the APIs that is implemented by the Remote Service Provider.
In the case of this preliminary specification, the version shall be “v0”. Future versions of this specification
may maintain retro compatibility with previous versions, but may also override them.

https://service.domain.org/csc/v0/

The service.domain.org address is used as an example here and should be replaced by the URL
registered by the Remote Service Provider. The URI fragments of the API methods documented in this
specification shall be concatenated to the Base URI. An exception is given by the OAuth 2.0 authorization
methods, which can use a URL different from the Base URI.

8.3 Integrity and confidentiality
A Remote Service conforming to this specification shall always implement Transport Layer Security (TLS) in
order to ensure the integrity and confidentiality of the communications. This prevents easy eavesdropping
or impersonation if authentication credentials are hijacked. Another advantage of always using TLS is that
guaranteed encrypted communications simplifies the authentication schemes, so for example simple
mechanisms like Basic HTTP authentication can be used because the security elements (username and
password) are always transmitted over an encrypted channel.

The only exception to using TLS communications is when the communication channel between the
signature application and the Remote Service already implements other methods to guarantee integrity
and confidentiality, for example using a VPN connection. In that case, TLS may not be implemented.

12 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

TLS 1.2 as described in RFC 5246 is, at the time of this writing, the latest version of TLS. TLS 1.2 shall be
implemented by Remote Services conforming to this specification and is the recommended mechanism to
use as it provides access to advanced cipher suites that support elliptic curve cryptography and AEAD block
cipher modes. The previous versions 1.1 of TLS may be used, but, although providing a broader
interoperability, it is also increasingly less secure. TLS 1.0 is considerably less secure and some security
certifications like PCI DSS 3.1 explicitly forbid it, so Remote Services should not support it.

All versions of SSL, the security protocol in use before TLS, are considered insecure. Remote Services
conforming to this specification shall not implement SSL.

8.4 Remote Service Information
This specification defines a standard and interoperable protocol to connect a client application to a Remote
Service. Other similar specifications exist in the industry, but they are typically proprietary and
incompatible, so if a Signature Application wants to support multiple Remote Services, then the
development effort would increment significantly.

This specification has been designed to support modular services that may be implemented in line with the
capacity and mission of the provider. This means that a Remote Service that supports this specification may
implement only a particular subset of the API methods defined herein. In order to support this approach,
this specification defines the info method, which all Remote Services shall implement to allow the client
application to discover which of the API methods are supported.

In addition, the info method returns several information on the Remote Service which may be useful to a
calling application to access its functions and features.

9 Authentication and authorization
This specification deals with two different and types of authentication and authorization:

a. Service authentication and authorization.
b. Credential authorization.

9.1 Service authorization and authentication
In order to protect the Remote Service from unauthorized access, this specification requires the signature
application to obtain a valid “access token” to authorize the access to the APIs. This type of authorization is
called service authorization. Various types of authorization mechanisms can be supported, and more will be
supported in future versions, and the Signature Application shall adopt any of those available from the
Remote Service as specified in response to the info method.

The Remote Service may also adopt an indirect way of authorizing access to the API. The underlying
communication channel with the signature application may ensure access control in a different way, for
example with a private point-to-point LAN connection or through a VPN (Virtual Private Network).

The access to the APIs shall also be authenticated. When the authentication is under the control of a
Signature Application Provider, then the user shall be properly authenticated by this provider before
getting access to the Remote Service. This scenario supports organizations that manage a user community
with an existing form of authentication, for example a Bank managing the users from their Internet Banking
service. This means that, in order to retrieve the signing credentials associated to a user, this organization

13 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

would have to take care of the correspondence between the user identifier in their own domain and the
user identifier in the Remote Service’s domain.

When the authentication is under the control of the Remote Service, the Signature Application shall
perform a token-based authentication to the Remote Service by leveraging the security elements collected
from the user, either through HTTP Basic or HTTP Digest authentication, or preferably via an OAuth 2.0
authorization mechanism. In practice, the Signature Application will require the user to authenticate
directly to the Remote Service using any of the available methods. This would offer an authorization
mechanism even in case the Signature Application and the Remote Service have not previously established
any form of service authentication.

Two methods are defined in this specification to obtain an access token to authorize the access to the
Remote Service API:

• The auth/login method shall be used when HTTP Basic or Digest authentication mechanism are
preferred and supported by the Remote Service. The Signature Application will collect the security
elements from the user and will pass them to the Remote Service.

• The oauth2/token method shall be used when an OAuth 2.0 authorization mechanism is preferred
and supported by the Remote Service. The Signature Application will not collect any security
elements from the user, but instead it will redirect to the Remote Service that will authenticate the
user in its own web-based user interface. See Section 9.3 for further information on how to
implement OAuth 2.0 authorization.

In both cases, if the user grants the authorization, the Remote Service will return a service access token to
the Signature Application. From then on, all authorized requests to the API methods shall use an
Authorization header with the type Bearer followed by this service access token.

If the user does not grant the permission, the Remote Service will return an error message.

9.2 Credential authorization
Accessing a credential for remote signing requires an authorization from the user who owns it to ensure the
“sole control” of the signing key associated to it. Typically, the RSSP or the RSCD implement a Signature
Activation Module (SAM) that control the key store (e.g. HSM) giving users the ability to authorize the
access to their signing keys.

The SAM can manage the authorization in different ways, with different technologies and a variable
number of authorization factors. This really depends on the implementation and on the policy adopted by
the RSSP, and may also be determined by the level of compliance to industry and regulatory requirements,
like in the case of standards like CEN EN 419 241-1, which defines different levels of “sole control
assurance”.

Three different types of credential authorization are defined and supported in this specification:

• Implicit authorization
• Explicit authorization
• OAuth 2.0 authorization

Implicit authorization means that the Remote Service is taking care of the authorization process
autonomously, by engaging with the user without any intermediation from the Signature Application. In
this case, the Signature Application will invoke the credential authorization methods without passing any
security elements, as these would be implicitly managed by the Remote Service directly with the user.

14 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

Implicit authorization supports the SCAL1 (Sole Control Assurance Level 1) case defined in CEN 419 241-1 as
well as SCAL2. In the first case, the service authorization activated with the security elements provided by
the user is sufficient as a basic authorization of the signing key associated to the credential. With the SCAL 2
case, the SAM provides a completely independent two-factor authorization mechanism that does not
require any user interaction to occur within the Signature Application.

Explicit authorization means that the Remote Service relies on the Signature Application to collect secure
elements like static and/or dynamic one-time passwords from the user in its own environment, based on
the parameters returned by the credentials/info method. This method returns the number, type and
format of the required or optional secure elements, such that the Signature Application could show the
proper interactive controls to collect them from the user.

A common type of explicit authorization used by a SAM is based on a static numeric PIN - generally defined
by the user - associated to the signing key when it is generated. To increase the level of assurance of user
control, ensuring that only the authorized user could create a signature with a certain credential, a stronger
authorization factor may be adopted. A dynamically generated text-based OTP (One-Time Password) is a
common strong authorization mechanism. PIN and OTP are supported directly in this specification and can
be used in combination to service authorization to achieve the highest levels of assurance of the user’s sole
control, fully supporting the requirements for SCAL 1 and SCAL2 as defined in CEN 419 241-1.

Biometric validation and phone call drop are also examples of possible authorization mechanisms. These
and other authorization mechanisms can be supported by means of an OAuth 2.0 authorization scheme.

9.3 OAuth 2.0 Authorization
OAuth 2.0 is an authorization framework that enables applications to obtain access to HTTP based services.
It provides client applications a “secure delegated access” to server resources on behalf of a resource
owner. This allows resource owners to authorize third-party access to their server resources without
sharing their credentials.

Using the OAuth 2.0 authorization scheme, the Signature Application will show a web page managed by the
Remote Service where the user will be authenticated according to the specific mechanism implemented
there. After a successful authentication, the authorization server of the Remote Service will return an
authorization code or an access token to the Signature Application. This access token will be used later to
authorize access to the Remote Service’s resources.

This specification supports the main types of OAuth 2.0 implementations as described in RFC 6749:

• Authorization Code flow
• Implicit Grant flow
• Client Credentials flow

OAuth 2.0 authorization mechanisms can be used for both Service and Credentials authorization, with the
exception of the Client Credentials flow, which should be only used for Service authorization as it does not
offer a form of user authentication. A Remote Service can therefore implement a single OAuth 2.0
authorization server supporting two different scopes for “service” and “credential”.

Before using an OAuth 2.0 authorization mechanism, the Signature Application shall obtain from the
Remote Service the client credentials (a Client ID and conditionally a Client Secret) and register one or more
Redirect URI address with it. The means through which the Signature Application registers with the Remote
Service are beyond the scope of this specification.

15 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

The following pages describe the OAuth 2.0 mechanisms supported by this specification and how to invoke
them. Notice that the Client Credential flow is not described separately because it can be invoked by means
of the oauth2/token method using a grant_type with value “client_credentials”.

16 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

OAuth 2.0 Authorization Code [oauth2/authorize]
Description: Starts the OAuth 2.0 authorization server using an Authorization Code flow, as described

in Section 1.3.1 of RFC 6749, to request authorization for the user to access the Remote
Service resources. The authorization is returned in the form of an authorization code,
which the Signature Application shall then use to obtain an access token with the
oauth2/token method. The authorization server should support two access token
scopes: “service” and “credential”. These scopes shall be used to obtain an access token
suitable for service and credentials authorization respectively.

NOTE: oauth2/authorize does not specify a regular API method, but rather the recommended URI
fragment of the address of the web page allowing the user sign-in to the Remote Service to
authorize the Signature Application. The complete URL that shall be used for invoking the
authorization server is returned in the oauth2 parameter of the info method, and does not
necessarily include the default base URI of the Remote Service API. At the end of the
authorization process, the authorization server shall redirect the user-agent by sending the
HTTP/1.1 302 Found response with a Location header containing the URI specified by the
redirect_uri parameter, which shall be pre-registered with the Remote Service by the
Signature Application.

Input: In case the scope of the OAuth 2.0 authorization request is “credential”, the Bearer
service token shall be added to the Authorization header. In order to maintain
compatibility with the OAuth 2.0 standard, the following parameters shall be passed as
URL-encoded query parameters, and not as JSON data in the body of the request.

Parameter Presence Value Description

response_type Required String
code

The value shall be “code”.

client_id Required String This is the unique “client ID” previously assigned to the
Signature Application by the Remote Service.

redirect_uri

Optional String

The URL where the user will be redirected after the
authorization process has completed. Only a valid URI
pre-registered with the Remote Service shall be passed. If
omitted, the Remote Service will use the default redirect
URI pre-registered by the Signature Application.

scope

Optional String
service | credential

The scope of the access request as described by Section
3.3 of RFC 6749.
• “service”: it shall be used to obtain an access token

suitable for service authorization.
• “credential”: it shall be used to obtain an access

token suitable for credentials authorization.
The parameter is optional. The defaults scope is
“service” in case it is omitted.

state

Optional String

Up to 255 bytes of arbitrary data from the Signature
Application that will be passed back to the redirect URI. It
can be used to handle a transaction identifier or other
application-specific data. The use ir recommended for
preventing cross-site request forgery.

lang

Optional String

Request a preferred language according to RFC 3066.
If specified, the Remote Service should render the
authorization web page in this launguage, if supported. If
omitted, the Remote Service shall render the
authorization web page in its own default language.

17 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

credentialID
 Required

Conditional String
The identifier associated to the credential to authorize. It
shall be used only if the scope of the OAuth 2.0
authorization request is “credential”.

numSignatures

Required
Conditional Number

The number of signatures to authorize. Multi-signature
transactions can be obtained by using a combination of
array of hash values and by calling the
signatures/signHash method multiple times. It shall be
used only if the scope of the OAuth 2.0 authorization
request is “credential”.

hash
Required

Conditional Array of String

One or more Base64-encoded hash values to be signed. It
shall be used only if the scope of the OAuth 2.0
authorization request is “credential” and the SCAL
parameter returned by credentials/info is “2”.

Output: After a successful user authentication, the authorization server shall redirect the user-

agent by sending the HTTP/1.1 302 Found response with a Location header containing
the URI specified by the redirect_uri parameter with the following URL-encoded query
parameters.

Attribute Presence Value Description
code

Required String

The authorization code generated by the authorization
server. It shall be bound to the client identifier and the
redirection URI. It shall expire shortly after it is issued to
mitigate the risk of leaks. The Signature Application
cannot use the value more than once.

state
Conditional String

Contains the arbitrary data from the signature
application that was specified in the input request. It
shall be returned only when specified in the request.

error

Conditional

String
invalid_request |

unauthorized_client
| access_denied |

unsupported_respo
nse_type |

invalid_scope |
server_error |

temporarily_unavail
able

A single error code string from the following list:
• “invalid_request”: it shall be used if the request is

missing a required parameter.
• “unauthorized_client”: it shall be used if the client is

not authorized.
• “access_denied”: it shall be used if the server denied

the request.
• “unsupported_response_type”: it shall be used if the

server does not support the required response type.
• “invalid_scope”: it shall be used if the requested

scope is invalid, unknown, or malformed.
• “server_error”: it shall be used if the server

encountered an unexpected condition that
prevented it from fulfilling the request.

• “temporarily_unavailable”: it shall be used if the
server is currently unable to handle the request due
to temporary overloading or maintenance.

error_description Conditional String Human-readable text providing additional error
information.

error_uri Conditional String A URI identifying a human-readable web page with
information about the error.

Sample Request (service authorization)

GET https://www.domain.org/oauth2/authorize?response_type=code&
client_id=[CLIENT_ID]&redirect_uri=[REDIRECT_URI]&scope=service&state=12345678&
lang=en-US&appName=Cloud%20Signature%20Service

Sample Response

18 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

HTTP/1.1 302 Found
Location: [REDIRECT_URI]?code=FhkXf9P269L8g&state=12345678

Sample Request (credential authorization)

GET https://www.domain.org/oauth2/authorize?response_type=code&
client_id=[CLIENT_ID]&redirect_uri=[REDIRECT_URI]&scope=credential&
state=12345678&credentialID=GX0112348&numSignatures=1
Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA

Sample Response

HTTP/1.1 302 Found
Location: [REDIRECT_URI]?code=HS9naJKWwp901hBcK348IUHiuH8374&state=12345678

19 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

OAuth 2.0 Implicit Grant [oauth2/authorize]
Description: Starts the OAuth 2.0 authorization server using an Implicit grant flow, as described in

Section 1.3.2 of RFC 6749, to request authorization for the user to access the Remote
Service resources. The authorization is returned in the form of an access token that the
Signature Application shall use directly to invoke the signatures/signHash method. This
method is a simplified authorization code flow in which the Signature Application is
issued an access token directly. The authorization server should support two access
token scopes: “service” and “credential”. These scopes shall be used to obtain an access
token suitable for service and credentials authorization respectively.

NOTE: oauth2/authorize does not specify a regular API method, but rather the recommended URI
fragment of the address of the web page allowing the user sign-in to the Remote Service to
authorize the Signature Application. The complete URL that shall be used for invoking the
authorization server is returned in the oauth2 parameter of the info method, and does not
necessarily include the default base URI of the Remote Service API. At the end of the
authorization process, the authorization server redirects the user-agent by sending the
HTTP/1.1 302 Found response with a Location header containing the URI specified by the
redirect_uri parameter, which shall be pre-registered with the Remote Service by the
Signature Application.

Input: In case the scope of the OAuth 2.0 authorization request is “credential”, the Bearer
service token shall be added to the Authorization header. In order to maintain
compatibility with the OAuth 2.0 standard, the following parameters shall be passed as
URL-encoded query parameters, and not as JSON data in the body of the request.

Parameter Presence Value Description
response_type Required String

Token
The value shall be “token”.

client_id Required String This is the unique “client ID” previously assigned to the
Signature Application by the Remote Service.

redirect_uri

Optional String

The URL where the user will be redirected after the
authorization process has completed. Only a valid URI
pre-registered with the Remote Service shall be passed. If
omitted, the Remote Service will use the default redirect
URI pre-registered by the Signature Application.

scope

Optional String
service | credential

The scope of the access request as described by Section
3.3 of RFC 6749.
• “service”: it shall be used to obtain an access token

suitable for service authorization.
• “credential”: it shall be used to obtain an access

token suitable for credentials authorization.
The parameter is optional. The defaults scope is
“service” in case it is omitted.

state

Optional String

Up to 255 bytes of arbitrary data from the Signature
Application that will be passed back to the redirect URI. It
can be used to handle a transaction identifier or other
application-specific data. The use ir recommended to
prevent cross-site request forgery.

lang

Optional String

Request a preferred language according to RFC 3066.
If specified, the Remote Service should render the
authorization web page in this launguage, if supported. If
omitted, the Remote Service shall render the
authorization web page in its own default language.

20 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

credentialID
 Required

Conditional String
The identifier associated to the credential to authorize. It
shall be used only if the scope of the OAuth 2.0
authorization request is “credential”.

numSignatures

Required
Conditional Number

The number of signatures to authorize. Multi-signature
transactions can be obtained by using a combination of
array of hash values and by calling the
signatures/signHash method multiple times. It shall be
used only if the scope of the OAuth 2.0 authorization
request is “credential”.

hash
Required

Conditional Array of String

One or more Base64-encoded hash values to be signed. It
shall be used only if the scope of the OAuth 2.0
authorization request is “credential” and the SCAL
parameter returned by credentials/info is “2”.

Output: After a successful user authentication, the authorization server redirects the user-

agent by sending the HTTP/1.1 302 Found response with a Location header containing
the URI specified by the redirect_uri parameter with the following URL-encoded query
parameters.

Attribute Presence Value Description

access_token

Required String

The short-lived service access token. It shall be used
depending on the scope of the OAuth 2.0 authorization
request.
When the scope is “service” then it shall be used as the
value of the “Authorization: Bearer” in the HTTP header
of the subsequent API requests within the same session.
When the scope is “credential” then it shall be used as a
Signature Activation Data token to authorize the
signature request. This value shall be used as the value
for the SAD parameter when invoking the
signatures/signHash method.

token_type Required String
Bearer

Specifies a "Bearer" token type as defined in RFC 6750.

expires_in Optional Number The lifetime in seconds of the service access token. If
omitted, the default expiration time is 3600 (1 hour).

state
Conditional String

Contains the arbitrary data from the signature
application that was specified in the input request. It
shall be returned only when specified in the request.

error

Conditional

String
invalid_request |

unauthorized_client
| access_denied |

unsupported_respo
nse_type |

invalid_scope |
server_error |

temporarily_unavail
able

A single error code string from the following list:
• “invalid_request”: it shall be used if the request is

missing a required parameter.
• “unauthorized_client”: it shall be used if the client is

not authorized.
• “access_denied”: it shall be used if the server denied

the request.
• “unsupported_response_type”: it shall be used if the

server does not support the required response type.
• “invalid_scope”: it shall be used if the requested

scope is invalid, unknown, or malformed.
• “server_error”: it shall be used if the server

encountered an unexpected condition that
prevented it from fulfilling the request.

• “temporarily_unavailable”: it shall be used if the
server is currently unable to handle the request due
to temporary overloading or maintenance.

error_description Conditional String Human-readable text providing additional error
information.

error_uri Conditional String A URI identifying a human-readable web page with
information about the error.

21 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

Sample Request (service authorization)

GET https://www.domain.org/oauth2/authorize?response_type=token&
client_id=[CLIENT_ID]&redirect_uri=[REDIRECT_URI]&scope=service&state=12345678&
lang=en-US&appName=Cloud%20Signature%20Service

Sample Response

HTTP/1.1 302 Found
Location: [REDIRECT_URI]?access_token=FhkXf9P269L8g&token_type=Bearer&
expires_in=3600&state=12345678

Sample Request (credential authorization)

GET https://www.domain.org/oauth2/authorize?response_type=token&
client_id=[CLIENT_ID]&redirect_uri=[REDIRECT_URI]&scope=credential&
state=12345678&credentialID=GX0112348&numSignatures=1
Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA

Sample Response

HTTP/1.1 302 Found
Location: [REDIRECT_URI]?access_token=FhkXf9P269L8g&token_type=Bearer&
expires_in=3600state=12345678

22 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

10 Creating a Remote Signature
Remote Signature services allow generating digital signatures remotely by means of a RSCD operated as a
service. A Remote Signature Service Provider is an organization that manages the RSCD on behalf of the
signers.

The RSCD should be able to manage the following remote signature scenarios:

• The remote signature of a single hash;
• The remote signature of multiple hashes passed in a single signature operation;
• The remote signature of multiple hashes passed across multiple signature operations occurring

within a single session.

In general, each time a remote signature is required, the strong authentication mechanism should be
invoked. However, in order to improve the signer’s experience, the strong authentication may be allowed
to occur only once per signing session covering multiple signatures. This possibility depends on the policy of
the Remote Service, which may not allow it, based on regulatory or security requirements.

See Section 13 to understand all the workflows supported in this specification and the sequence of API calls
to be invoked in order to create the supported types of remote signatures.

10.1 Multi-signature Transactions
This specification requires credentials authorization every time a signature is created. This means that
applying multiple signatures may require the user to authorize the Signature Application multiple times in a
rapid sequence, which would be cumbersome in case of strong authorization mechanisms like OTP. To
simplify processing a set of signatures or documents, the Remote Service may support the ability to
authorize multi-signature transactions.

A multi-signature transaction allows a user to sign multiple times although requiring a single authorization
assertion (for example a single OTP).

A multi-signature transaction can be created by submitting multiple hash values at once (suitable for batch
signing) or by invoking the signatures/signHash method multiple times. In both cases, the authorization
mechanism adopted by the Signature Application shall explicitly specify the total number of signatures to
be authorized.

The ability to create a multi-signature transaction depends on the policy adopted by the Remote Service.
The multisign parameter of the credentials/info method should be used to check if multi-signature
transactions are supported or not by a specific credential.

11 Error handling
Errors are returned by the Remote Service using standard HTTP status code syntax. Any additional info is
included as JSON in the body of the response from an API request.

The HTTP protocol defines a list of standard status codes that are referenced in this document to help the
Signature Application deal with these responses accordingly. A Remote Service conforming to this
specification should support all the following HTTP status codes:

23 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

Table 1 – HTTP Status Codes

Standard Status Code Description
200 OK Response to a successful API method request.

302 Found Response used to redirect the user to an OAuth 2.0 authorization endpoint.

400 Bad Request Returned when an error is returned due to an unsupported or invalid
parameters or missing required parameters.

401 Unauthorized Returned when a bad or expired authorization token is used.
429 Too Many Requests Returned when a request is rejected due to rate limiting.
500 Internal Server Error Returned when the server encounters an unexpected condition.

501 Not Implemented Returned when an unimplemented method is requested.

503 Service Unavailable Returned when the server is currently unable to handle the request due to
temporary overloading or maintenance conditions.

11.1 Error messages
Just as an HTML error page shows a useful error message to a visitor, the Remote Service implementing the
API described in this specification shall provide a useful error message in case something goes wrong. When
an error is detected, the Remote Service shall return an HTTP Status Code 400 Bad Request and the
information on the error shall be returned by the Remote Service in the body of the HTTP response using
the "application/json" media type as defined by RFC 4627. The parameters are serialized into a JSON
structure by adding each parameter at the highest structure level. Parameter names and string values are
included as JSON strings as per the following example:

HTTP/1.1 400 Bad Request
Content-Type: application/json
{

"error": "invalid_request",
"error_description": "This is not a valid access token"

}

The error_description parameter is Optional but highly recommended to contain a human-readable text
string providing additional information to assist the Signature Application in understanding the error that
occurred.

The Remote Service can define custom error messages by using messages that are not defined in this
specification. Notice that these error messages may have an inconsistent meaning among different
implementations of this specification.

Error Codes from the following predefined list have a very precise meaning according to the corresponding
Error Description:

Table 2 – Predefined Error Messages

Error Error Description
invalid_request The request is missing a required parameter, includes an invalid parameter

value, includes a parameter more than once, or is otherwise malformed.
unauthorized_client The client is not authorized to use this method.
access_denied The user, authorization server or Remote Service denied the request.
unsupported_response_type The authorization server does not support obtaining an authorization code using

this method.
invalid_scope The requested scope is invalid, unknown, or malformed.

24 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

server_error The authorization server encountered an unexpected condition that prevented it
from fulfilling the request.

temporarily_unavailable The authorization server is currently unable to handle the request due to a
temporary overloading or maintenance of the server.

expired_token The access or refresh token is expired or has been revoked.
invalid_token The token provided is not a valid OAuth access or refresh token.

12 The Remote Service APIs
In order to simplify the navigation of this specification, the following table summarizes all the API methods
defined in the present document.

Table 3 – API methods summary

URI Description

info Returns information on the Remote Service and the list of API methods it has
implemented.

auth/login Authorize the Remote Service with HTTP Basic or Digest authentication.

auth/revoke Revoke the service access token or refresh token.

oauth2/token Obtain an OAuth 2.0 access token.

credentials/list Returns the list of credentials associated to a user.

credentials/info Returns information on a signing credential, its associated certificate and a
description of the supported authorization mechanism.

credentials/authorize Authorize the access to the credential for signing.

credentials/extendTransaction Extend the validity of a multi-signature transaction.

credentials/sendOTP Start the online OTP mechanism associated to a credential.

signatures/signHash Calculate a raw digital signature from one or more hash values.

signatures/timestamp Return a time stamp token for the input hash value.

25 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

info
Description: Returns several information about the Remote Service and the list of the API methods

implemented and supported by it.

Input: This method allows the following parameters:

Parameter Presence Value Description
lang

Optional String

Request a preferred language of the response to the
Remote Service, specified according to RFC 3066.
If present, the Remote Service shall provide language-
specific responses using the specified language. If the
specified language is not supported then it shall provide
these responses in the language as specified in the lang
output parameter.

Output: This method returns the following parameters.

Attribute Presence Value Description
specs

Required String

The version of this specification implemented by the
provider. The format of the string is Major.Minor.x.y,
where Major is a number equivalent to the API version
(e.g. 1 for API v1) and Minor is a number identifying the
version update, while x and y are subversion numbers.

name Required String The commercial name of the Remote Service.

logo

Required String

The URI of the image file containing the logo of the
Remote Service which shall be published online. The
image shall be in either JPEG or PNG format and not
larger than 256x256 pixels.

region
 Required String

The ISO 3166-1 Alpha-2 code of the Country where the
Remote Service provider is established (e.g. ES for
Spain).

lang Required String The language used in the responses, specified according
to RFC 3066.

description
Required String

Contains a free form description of the Remote Service
in the lang language. The maximum size of the string
shall be 255 characters.

authType

Required Array of String

Specifies one or more values corresponding to the
authentication mechanisms supported by the Remote
Service to authorize the access to the API:
• “external”: in case the authorization is managed

externally (e.g. using a VPN or a private LAN).
• “TLS”: in case the authorization is provided by means

of TLS client certificate authentication.
• “basic”: in case of HTTP Basic Authentication.
• “digest”: in case of HTTP Digest Authentication.
• “oauth2code”: in case of OAuth 2.0 with

authorization code flow.
• “oauth2implicit”: in case of OAuth 2.0 with implicit

grant flow.
• “oauth2client”: in case of OAuth 2.0 with client

credentials flow.
oauth2

Required
Conditional String

Specifies the complete URI of the OAuth 2.0 service
authorization endpoint provided by the Remote Service.
The parameter is required only if the authType
parameter contains “oauth2code” or “oauth2implicit”.

methods
Required Array of String

Specifies the list of names of all the API methods
described in this specification that are implemented and
supported by the Remote Service.

26 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

Sample Request

POST https://service.domain.org/csc/v0/info

Sample Response

HTTP/1.1 200 OK
{

"specs": "1.1",
"name": "ACME Trust Services",
"logo": "https://service.domain.org/images/logo.png",
"region": "IT",
"lang": "en-US",
"authType": ["basic", "oauth2code", "oauth2implicit"],
"oauth2": "https://www.domain.org/oauth2/authorize",
"methods":
[

"auth/login",
"auth/revoke",
"oauth2/token",
"credentials/list",
"credentials/info",
"credentials/authorize",
"credentials/sendOTP",
"signatures/signHash"

]
}

27 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

auth/login
Description: Obtain an access token for service authorization from the Remote Service using HTTP

Basic Authentication or HTTP Digest authentication, as defined in RFC 2617, using the
“userID” and “password” assigned to the user. These secure elements shall be passed
directly in the HTTP header as an authorization grant to obtain a service access token
to use for the subsequent API requests within the same session.
The rememberMe parameter can be optionally used, under the control of the user, in
order to extend a successful authentication for the subsequent session, and avoid the
user to authenticate again within a predefined period of time. In this case a refresh
token will be returned, which can be passed in the refresh_token parameter in
subsequent calls as an alternative to passing “userID” and “password” to obtain a new
access token.

NOTE: HTTP Basic Authentication is not a completely safe mechanism and therefore it is not
recommended for use, especially by Signature Application Providers. This method might also
be deprecated in future releases of this specification. The recommended mechanism for user
authentication is OAuth 2.0 (see Section 9.3).

Input: The “userID” and “password” strings shall be encoded as defined in RFC 2617 and
provided into the Authorization HTTP header. Alternatively, a refresh token can be
used to re-authenticate the user after the access token has expired. This method
allows the following parameters:

Parameter Presence Value Description
refresh_token

Required
Conditional String

The long-lived refresh token returned from the previous
HTTP Basic Authentication. This is used as an alternative
to passing the Authorization header to reauthenticate
the user according to the method described in RFC 6749
par. 1.5.
NOTE: This refresh token is not compatible with refresh
tokens obtained by means of OAuth 2.0 authorization.

rememberMe

Optional Boolean

This parameter normally corresponds to an option that
the user may activate during the authentication phase to
"stay signed in" and maintain the authentication valid
across multiple sessions.
• “true”: if the Remote Service supports user

reauthentication, a refreshToken will be returned
and the signature application may use it on the
subsequent session instead of passing the
Authorization header.

• “false”: if the Remote Service does not support user
reauthentication, a refresh_token will not be
returned.

If the parameter is omitted, it will default to “false”.
This mechanism is based on the method described in
RFC 6749 par. 1.5.

clientData
 Optional String

Arbitrary data from the Signature Application. It can be
used to handle a transaction identifier or other
application-specific data.

Output value: This method returns the following parameters.

28 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

Attribute Presence Value Description
access_token

Required String

The short-lived service access token used to authenticate
the subsequent API requests within the same session.
This shall be used as the value of the “Authorization:
Bearer” in the HTTP header of the API requests. The
access token has a limited time validity. In case of
expired token, the Remote Service returns an error and a
new auth/login request will be required.

refresh_token

Optional
Conditional String

The long-lived refresh token used to re-authenticate the
user on the subsequent session. The value is returned if
the rememberMe parameter in the request is “true” and
the Remote Service supports user reauthentication.
This mechanism is based on the method described in RFC
6749 par. 1.5.
NOTE: This refresh_token is not compatible with refresh
tokens obtained by means of OAuth 2.0 authorization.

expires_in Optional Number The lifetime in seconds of the service access token. If
omitted, the default expiration time is 3600 (1 hour).

Error Case Status Code Error Error Description
The authorization header
does not match the basic
HTTP authentication pattern
(“Basic [base64]”) - if refresh
token is not present

401
(unauthorized) invalid_request

The request is missing a required parameter, includes
an invalid parameter value, includes a parameter
more than once, or is otherwise malformed.

Decoded credentials are not
in the form
“username:password”

400
(bad request) invalid_request

The request is missing a required parameter, includes
an invalid parameter value, includes a parameter
more than once, or is otherwise malformed.

Invalid refresh_token
parameter format

400
(bad request) invalid_request Invalid string parameter: refresh_token

Invalid refresh_token value 400
(bad request) invalid_request Invalid refresh_token

Authentication error – login
failed

400
(bad request) authentication_error An error occurred during authentication process

Sample Request

POST https://service.domain.org/csc/v0/auth/login
Authorization: Basic Y2xpZW50X2lkOmNsaWVudF9zZWNyZXQ=
Content-Type: application/json
{

"rememberMe": true
}

Sample Response

HTTP/1.1 200 OK
{

"access_token": "4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA",
"refresh_token": "_TiHRG-bA H3XlFQZ3ndFhkXf9P24/CKN69L8gdSYp5_pw",
"expires_in": 3600

}

29 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

auth/revoke
Description: Revoke a service access token or refresh token that was obtained from the Remote

Service, as described in RFC 7009. This method exists to enforce the security of the
Remote Service. When the Signature Application needs to terminate a session, it is
recommended to invoke this method to prevent further access by reusing the token.
This method allows the Signature Application to invalidate its tokens according to the
following approach: If the token passed to the request is a refresh token, then the
authorization server shall also invalidate all access tokens based on the same
authorization grant. If the token passed to the request is an access token, then the
server shall not revoke any existing refresh token based on the same authorization
grant. The invalidation of the token takes place immediately, and the token cannot be
used again after its revocation.

Input: This method allows the following parameters:

Parameter Presence Value Description
token Required String The token that the Signature Application wants to get

revoked.
token_type_hint

Optional
String

access_token |
refresh_token

Specifies an optional hint about the type of the token
submitted for revocation. If the parameter is omitted,
the authorization server should try to identify the token
across all the available tokens.

clientData
 Optional String

Arbitrary data from the Signature Application. It can be
used to handle a transaction identifier or other
application-specific data.

Output: This method has no output parameters.

Error Case Status Code Error Error Description
The authorization header
does not match the pattern
“Bearer [sessionKey]”

400
(bad request) invalid_request

The request is missing a required parameter,
includes an invalid parameter value, includes a
parameter more than once, or is otherwise
malformed.

Missing or not String “token”
parameter

400
(bad request) invalid_request Missing (or invalid type) string parameter token

“token_hint” parameter
present, not equal to
“access_token” nor
“refresh_token”

400
(bad request) invalid_request

Invalid string parameter token_type_hint

Invalid access_token or
refresh_token

400
(bad request) invalid_request Invalid string parameter token

Sample Request

POST https://service.domain.org/csc/v0/auth/revoke
Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA
Content-Type: application/json
{

"token": "_TiHRG-bA H3XlFQZ3ndFhkXf9P24/CKN69L8gdSYp5_pw",
"token_type_hint": "refresh_token",
"clientData": "12345678"

}

30 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

Sample Response

HTTP/1.1 200 OK

31 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

oauth2/token
Description: Obtain an OAuth 2.0 bearer access token from the Remote Service by passing either

the client credentials pre-assigned by the Remote Service to the Signature Application,
or the authorization code or refresh token returned by the Authorization Server after a
successful user authentication, along with the client ID and client secret in possession
of the Signature Application. This method shall be used only in case of an Authorization
Code flow as described in Section 1.3.1 of RFC 6749, in case of Client Credential flow as
described in Section 1.3.4 of RFC 6749 or in case of Refresh Token flow as described in
Section 1.5 of RFC 6749. Notice that the Client Credential flow and Refresh Token flow
can be used only for service authorization.

Input: In case the scope of the OAuth 2.0 authorization request is “credential”, the Bearer
service token shall be added to the Authorization header. This method allows the
following parameters:

Parameter Presence Value Description
grant_type

Required

String
authorization_code
| client_credentials

| refresh_token

The grant type, which depends on the type of OAuth 2.0
flow:
• “authorization_code”: shall be used in case of

Authorization Code Grant.
• “client_credentials”: shall be used in case of Client

Credentials Grant.
• “refresh_token”: shall be used in case of Refresh

Token flow.
code

Required
Conditional String

The authorization code returned by the authorization
server. It shall be bound to the client identifier and the
redirection URI. This shall be used only when grant_type
is “authorization_code”.

refresh_token

Required
Conditional String

The long-lived refresh token returned from the previous
session. This shall be used only when the scope of the
OAuth 2.0 authorization request is “service” and
grant_type is “refresh_token” to reauthenticate the user
according to the method described in Section 1.5 of RFC
6749.

client_id Required String This is the unique “client ID” previously assigned to the
Signature Application by the Remote Service.

client_secret Required String This is the “client secret” previously assigned to the
Signature Application by the Remote Service.

redirect_uri

Required
Conditional String

The URL where the user was redirected after the
authorization process completed. It is used to validate
that it matches the original value previously passed to
the Authorization Server. This shall be used only if the
redirect_uri parameter was included in the authorization
request, and their values shall be identical.

clientData
 Optional String

Arbitrary data from the Signature Application. It can be
used to handle a transaction identifier or other
application-specific data.

Output value: This method returns the following parameters:

Attribute Presence Value Description

access_token
Required String

The short-lived access token to be used depending on
the scope of the OAuth 2.0 authorization request.
When the scope is “service” then the Authorization
Server returns a bearer token to be used as the value of

32 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

the “Authorization: Bearer” in the HTTP header of the
subsequent API requests within the same session.
When the scope is “credential” then the Authorization
Server returns a Signature Activation Data token to
authorize the signature request. This value should be
used as the value for the SAD parameter when invoking
the signatures/signHash method.

refresh_token

Optional String

The long-lived refresh token used to re-authenticate the
user on the subsequent session based on the method
described in Section 1.5 of RFC 6749.
The presence of this parameter is controlled by the user
and is allowed only when the scope of the OAuth 2.0
authorization request is “service”.

token_type Required String
Bearer

Specifies a "Bearer" token type as defined in RFC6750.

expires_in Optional Number The lifetime in seconds of the service access token. If
omitted, the default expiration time is 3600 (1 hour).

Error Case Status Code Error Error Description
Missing or not String
“client_id” parameter

400
(bad request) invalid_request parameter [client_id] cannot be empty

Missing or not String
“client_secret” parameter

400
(bad request) invalid_request parameter [client_secret] cannot be empty

Missing or not String
“grant_type” parameter

400
(bad request) invalid_request parameter [grant_type] cannot be empty

Invalid parameter
“grant_type”

400
(bad request) invalid_request Invalid parameter grant_type

Missing or not String “code”
parameter

400
(bad request) invalid_request parameter [code] cannot be empty

Missing or not String
“refresh_token” parameter

400
(bad request) invalid_request parameter [refresh_token] cannot be empty

Invalid “client_id” parameter 400
(bad request) invalid_request Invalid parameter client_id

Invalid “client_secret”
parameter

400
(bad request) invalid_request Invalid parameter client_secret

The “redirect_uri” parameter
does not match any of the
client_id registered
redirect_uri regex

400
(bad request) invalid_request

redirect_uri parameter not allowed

Expired “access_token” 400
(bad request) invalid_request Session expired

The authorization header
does not match the pattern
“Bearer [sessionKey]”

401
(unauthorized) invalid_request

Missing access_token

Missing access_token 400
(bad request) access_denied Missing access_token

Invalid access_token 400
(bad request) access_denied Invalid access_token

Expired “SAD” 400
(bad request) invalid_request SAD expired

Invalid “refresh_token”
parameter

400
(bad request) invalid_request Invalid parameter refresh_token

Authorization code expired 400
(bad request) expired_token Authorization code expired

Sample Request (authorization code)

POST https://service.domain.org/csc/v0/oauth2/token

33 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

Content-Type: application/json
{

"grant_type": "authorization_code",
"code": "FhkXf9P269L8g",
"client_id": "test",
"client_secret": "password"

}

Sample Response

HTTP/1.1 200 OK
{

"access_token": "4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA",
"refresh_token": "_TiHRG-bA H3XlFQZ3ndFhkXf9P24/CKN69L8gdSYp5_pw",
"token_type": "Bearer",
"expires_in": 3600

}

Sample Request (refresh token)

POST https://service.domain.org/csc/v0/oauth2/token
Content-Type: application/json
{

"grant_type": "refresh_token",
"refresh_token": "_TiHRG-bA H3XlFQZ3ndFhkXf9P24/CKN69L8gdSYp5_pw",
"client_id": "test",
"client_secret": "password"

}

Sample Response

HTTP/1.1 200 OK
{

"access_token": "4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA",
"refresh_token": "HfoOIhOIH/D8huiygIH98h_8hGH9iIUASDfKk8v98YHSDa",
"token_type": "Bearer",
"expires_in": 3600

}

34 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

credentials/list
Description: Returns the list of credentials associated with a user identifier. A user may have one or

multiple credentials associated within a single Remote Signature Service Provider.
If the user is authenticated directly by the RSSP then the userID is implicit and shall not
be specified.
This method can also be used in case of a community of users, to get the list of
credentials assigned to a particular user or to get the list of credentials assigned to the
community. In this case the userID shall be passed explicitly to get the list of a specific
user, or omitted to get the full list of users from the community.

Input: This method allows the following parameters:

Parameter Presence Value Description
userID

Required
Conditional String

The user identifier associated to the user identity. This
parameter shall be specified only when there is no user-
specific authorization (e.g. when the authType returned
by the info method is “external” or “TLS”).
If the service authorization is user-specific (e.g. when the
authType returned by the info method is “basic”,
“digest” or “oauth2…”) the userID is already implicit in
the service access token passed in the Authorization
header. In this case, it shall not be possible to specify a
different userID to obtain the list of credentials
associated to another user, and the Remote Service shall
return an error.

maxResults

Optional Number

Maximum number of items to return. In case this
parameter is omitted or invalid (value is too big) the
Remote Service should return a predefined maximum
number of items.

pageToken
Optional String

The page token for the new page of items. The
parameter is only required to retrieve results other than
the first page.

clientData
 Optional String

Arbitrary data from the Signature Application. It can be
used to handle a transaction identifier or other
application-specific data.

Output: This method returns the following parameters:

Attribute Presence Value Description
credentialIDs Required Array of String One or more credentialID associated with the provided

or implicit userID.
nextPageToken

Optional String
The page token for the next page of items. No value is
returned if the Remote Service does not suports items
pagination or in case the last page is returned.

Error Case Status Code Error Error Description
The authorization header
does not match the pattern
“Bearer [sessionKey]”

400
(bad request) invalid_request

The request is missing a required parameter,
includes an invalid parameter value, includes a
parameter more than once, or is otherwise
malformed.

“maxResults” < 1 or
“maxResults” > 300

400
(bad request) invalid_request Invalid parameter maxResults

Invalid “pageToken” string
format (not numeric)

400
(bad request) invalid_request Invalid parameter pageToken

35 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

Not empty “userID”
parameter in case of user-
specific authorization

400
(bad request) invalid_request

userID parameter must be null

Invalid “userID” format in
case of no user-specific
authorization

400
(bad request) invalid_request

Invalid parameter userID

Sample Request

POST https://service.domain.org/csc/v0/credentials/list
Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA

Sample Response

HTTP/1.1 200 OK
{

"credentialIDs":
[

"GX0112348",
"HX0224685"

]
}

36 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

credentials/info
Description: Retrieve the credential and return the main identity information and the public key

certificate or the certificate chain associated to it. It can also return information about
the authorization mechanism required to authorize or authenticate the access to the
credential for remote signing, if requested.

Input: This method allows the following parameters:

Parameter Presence Value Description

credentialID Required String The identifier associated to the credential.

certificates

Optional
String

none | single |
chain

Specifies which certificates from the certificate chain
shall be returned in certs/certificates.
• “none”: no certificate is returned.
• “single”: only the end entity certificate is returned.
• “chain”: the full certificate chain is returned.
The default value is “single”, so if the parameter is
omitted then the method will only return the end entity
certificate.

certInfo

Optional Boolean

Specifies if the information on the end entity certificate
shall be returned as printable strings. This is useful in
case the Signature Application wants to retrieve some
details of the certificate without having to decode it.
The default value is “false”, so if the parameter is
omitted then the information will not be returned.

authInfo

Optional Boolean

Specifies if the information on the authorization
mechanisms supported by this credential (PIN and OTP
groups) shall be returned.
The default value is “false”, so if the parameter is
omitted then the information will not be returned.

lang

Optional String

Request a preferred language according to RFC 3066.
If specified, the Remote Service should return the label
and drescription parameters in this launguage, if
supported. If the language is not supported by the
Remote Service, it should specify the default language in
the output lang parameter.
If omitted, the Remote Service should return these
parameters in its own default language.

clientData
 Optional String

Arbitrary data from the Signature Application. It can be
used to handle a transaction identifier or other
application-specific data.

Output: This method returns the following parameters:

Attribute Presence Value Description
description

Optional String
A free form description of the credential in the lang
language. The maximum size of the string is 255
characters.

key/status

Required String
enabled | disabled

The status of enablement of the signing key of the
credential:
• “enabled”: the signing key is enabled and can be

used for signing.
• “disabled”: the signing key is disabled and cannot be

used for signing. This may occur when the owner has
disabled it or when the RSSP has detected that the
associated certificate is expired or revoked.

37 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

key/algo
Required Array of String

The list of OIDs of the supported key algorithms. For
example: 1.2.840.113549.1.1.1 = RSA encryption,
1.2.840.10045.4.3.2 = ECDSA with SHA256.

key/len Required Number The length of the cryptographic key in bits.

key/curve Required
Conditional String The OID of the ECDSA curve. The value shall only be

returned if keyAlgo is based on ECDSA.
cert/status

Optional

String
valid | expired |

revoked |
suspended

The status of validity of the end entity certificate. The
value is optional, so the Remote Service should only
return a value that is accurate and consistent with the
actual validity status of the certificate at the time the
response is generated.

cert/certificates

Required
Conditional Array of String

Contains one or more Base64-encoded X.509v3
certificates from the certificate chain. If the certificates
parameter is “chain”, the entire certificate chain shall be
returned with the end entity certificate at the beginning
of the array. If the certificates parameter is “single”, only
the end entity certificate shall be returned. If the
certificates parameter is “none”, this parameter shall not
be returned.

cert/issuerDN
Required

Conditional String
The Issuer Subject Distinguished Name from the X.509v3
end entity certificate in printable string format, UTF-8-
encoded according to RFC 2253. This parameter shall be
returned when certInfo is “true”.

cert/serialNumber Required
Conditional String

The Serial Number from the X.509v3 certificate in hex
encoded format. This parameter shall be returned when
certInfo is “true”.

cert/subjectDN
Required

Conditional String
The Distinguished Name from the X.509v3 certificate in
printable string format, UTF-8-encoded according to RFC
2253. This parameter shall be returned when certInfo is
“true”.

cert/validFrom
Required

Conditional String
The validity start date from the X.509v3 certificate in
printable string format, encoded as GeneralizedTime
format (RFC 2459) (e.g. “YYYYMMDDHHMMSSZ”). This
parameter shall be returned when certInfo is “true”.

cert/validTo
Required

Conditional String
The validity end date from the X.509v3 certificate in
printable string format, encoded as GeneralizedTime
format (RFC 2459) (e.g. “YYYYMMDDHHMMSSZ”). This
parameter shall be returned when certInfo is “true”.

authMode

Required
Conditional

String
implicit | explicit |

oauth2code |
oauth2token

Specifies one of the authorization modes:
• “implicit”: the authorization process is managed by

the Remote Service autonomously.
• “explicit”: the signature application shall collect up

to two levels of security elements.
• “oauth2code”: the authorization process is managed

by the Remote Service using an OAuth 2.0
mechanism based on authoritzation code as
described in Section 1.3.1 of RFC 6749.

• “oauth2token”: the authorization process is
managed by the Remote Service using an OAuth 2.0
mechanism based on implicit grant as described in
Section 1.3.2 of RFC 6749.

SCAL

Optional String
1 | 2

Specifies the Sole Control Assurance Level required by
the credential, as defined in CEN EN 419 241-1:
• “1”: at least a basic authorization is required (SCAL1).

This level does neither require to invoke any of the
credentials authorization methods nor to pass the
Signature Activation Data (SAD) to the
signatures/signHash method.

• “2”: at least a two-factor authorization is required
(SCAL2). This level requires the Remote Service to
generate the Signature Activation Data (SAD).

38 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

This parameter is optional and the default value is “1”.

PIN/presence Required
Conditional

String
true | false |

optional

Specifies if a text-based PIN is required or not, or
optional. This parameter shall be present only when
authMode is “explicit”.

PIN/format

Required
Conditional

String
A | N

Specifies the format of the PIN:
• “A”: the PIN contains alphanumeric text.
• “N”: the PIN contains numeric text.
This parameter shall be present only when authMode is
“explicit” and PIN/presence is not “false”. The size of the
PIN is not specified to improve its security.

PIN/label

Optional
Conditional String

Specifies an optional label for the data field used to
collect the PIN in the user interface, in the language
specified in the lang parameter. This parameter can be
present only when authMode is “explicit” and
PIN/presence is not “false”.

PIN/description

Optional
Conditional String

It optionally specifies a free form description of the PIN
in the language specified in the lang parameter. This
parameter can be present only when authMode is
“explicit” and PIN/presence is not “false”. The maximum
size of the string shall be 255 characters.

OTP/presence Required
Conditional

String
true | false |

optional

Specifies if a text-based OTP is required or not, or
optional. This parameter shall be present only when
authMode is “explicit”.

OTP/type

Required
Conditional

String
offline | online

Specifies the type of the OTP:
• “offline”: The OTP is generated offline by a dedicated

device and does not require the client to invoke the
credentials/sendOTP method.

• “online”: The OTP is generated online by the Remote
Service when the client invokes the
credentials/sendOTP method.

This parameter shall be present only when authMode is
“explicit” and OTP/presence is not “false”.

OTP/format

Required
Conditional

String
A | N

Specifies the data format of the OTP:
• “A”: the OTP contains alphanumeric text.
• “N”: the OTP contains numeric text.
This parameter shall be present only when authMode is
“explicit” and OTP/presence is not “false”.

OTP/label

Optional
Conditional String

Specifies an optional label for the data field used to
collect the OTP in the user interface, in the language
specified in the lang parameter. This parameter can be
present only when authMode is “explicit” and
OTP/presence is not “false”.

OTP/description

Optional
Conditional String

Optionally specifies a free form description of the OTP
mechanism in the language specified in the lang
parameter. This parameter can be present only when
authMode is “explicit” and OTP/presence is not “false”.
The maximum size of the string shall be 255 characters.

OTP/ID Required
Conditional String

Specifies the identifier of the OTP device or application.
This parameter shall be present only when authMode is
“explicit” and OTP/presence is not “false”.

OTP/provider Optional
Conditional String

Optionally specifies the provider of the OTP device or
application. This parameter can be present only when
authMode is “explicit” and OTP/presence is not “false”.

multisign

Required
Conditional Boolean

Specifies if the credential supports multiple signatures to
be created with a single authorization request (e.g. using
the transaction signature methods or submitting
multiple hash values to the credentials/signHash
method).

lang Optional String The language used in the responses, specified according
to RFC 3066.

39 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

Error Case Status Code Error Error Description
The authorization header
does not match the pattern
“Bearer [sessionKey]”

400
(bad request) invalid_request

The request is missing a required parameter,
includes an invalid parameter value, includes a
parameter more than once, or is otherwise
malformed.

Missing or not String
“credentialID” parameter

400
(bad request) invalid_request Missing (or invalid type) string parameter

credentialID
Invalid “credentialID”
parameter

400
(bad request) invalid_request Invalid parameter credentialID

Invalid “certificates”
parameter

400
(bad request) invalid_request Invalid parameter certificates

Sample Request

POST https://service.domain.org/csc/v0/credentials/info
Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA
Content-Type: application/json
{

"credentialID": "GX0112348",
"certificates": "chain",
"certInfo": true,
"authInfo": true

}

Sample Response

HTTP/1.1 200 OK
{

"key":
{

"status": "active",
"algo":
[

"1.2.840.113549.1.1.1",
"0.4.0.127.0.7.1.1.4.1.3"

],
"len": 2048

},
"cert":
{

"status": "valid",
"certificates":
[

"Base64-encoded X.509 end entity certificate",
"Base64-encoded X.509 intermediate CA certificate",
"Base64-encoded X.509 issuer CA certificate"

],
"issuerDN": "The X.500 issuer DN printable string",
"serialNumber": "5AAC41CD8FA22B953640",
"subjectDN": "The X.500 subject DN printable string",
"validFrom": "20160101100000Z",
"validTo": "20190101095959Z"

},
"authMode": "explicit",
"PIN":
{

"presence": true
"label": "PIN",

40 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

"description": "Please type the signature PIN"
},
"OTP":
{

"presence": true,
"type": "offline",
"ID": "MB01-K741200",
"provider": "totp",
"format": "N",
"label": "Mobile OTP",
"description": "Please type the 6 digit code you received on your
registered mobile phone"

},
"multisign": true,
"lang": "en-US"

}

41 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

credentials/authorize
Description: Authorize the access to the credential for remote signing, according to the

authorization mechanisms associated to it. This method returns the Signature
Activation Data (SAD) required to authorize the signatures/signHash method.
PIN and/or OTP values collected from the user shall be present in the request
according to the requirements specified by the credentials/info method.
This method shall be used in case of “explicit” authorization. This method shall also be
used in case of “implicit” authorization, to trigger the authorization mechanism
managed by the Remote Service. This method shall not be used in case of “oauth2”
credential authorization; instead, any of the available OAuth 2.0 authorization
mechanisms shall be used.
The numSignatures parameter shall indicate the total number of signatures to
authorize. In case of multi-signature transaction obtained by invoking the
signatures/signHash multiple times, the Signature Application should obtain a new
SAD by invoking the credentials/extendTransaction method before the current SAD
expires.

Input: This method allows the following parameters:

Parameter Presence Value Description
credentialID Required String The identifier associated to the credential.

numSignatures
 Required Number

The number of signatures to authorize. Multi-signature
transactions can be obtained by using a combination of
passing an array of hash values and calling the
signatures/signHash method multiple times.

hash Required
Conditional Array of String

One or more Base64-encoded hash values to be signed. It
shall be used if the SCAL parameter returned by
credentials/info is “2”.

PIN Required
Conditional String

The PIN collected from the user. It shall be used only
when authMode from credentials/info is “explicit” and
PIN/presence is not “false”.

OTP Required
Conditional String

The OTP collected from the user. It shall be used only
when authMode from credentials/info is “explicit” and
OTP/presence is not “false”.

description

Optional String

Contains a free form description of the authorization
transaction in the lang language. The maximum size of
the string shall be 500 characters. It can be useful when
authMode from credentials/info is “implicit” to provide
some hints about the occurring transaction.

clientData
 Optional String

Arbitrary data from the Signature Application. It can be
used to handle a transaction identifier or other
application-specific data.

Output: This method returns the following parameters:

Parameter Presence Value Description
SAD Required String The Signature Activation Data to provide as input to the

signatures/signHash method.
expiresIn Optional Number The lifetime in seconds of the service access token. If

omitted, the default expiration time is 3600 (1 hour).

42 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

Error Case Status Code Error Error Description
The authorization header
does not match the pattern
“Bearer [sessionKey]”

400
(bad request) invalid_request

The request is missing a required parameter,
includes an invalid parameter value, includes a
parameter more than once, or is otherwise
malformed.

Missing or not String
“credentialID” parameter

400
(bad request) invalid_request Missing (or invalid type) string parameter

credentialID
Invalid “credentialID”
parameter

400
(bad request) invalid_request Invalid parameter credentialID

Missing or not integer
“numSignatures” parameter

400
(bad request) invalid_request Missing (or invalid type) integer parameter

numSignatures
“numSignatures” < 1 400

(bad request) invalid_request Invalid parameter numSignatures

When present, invalid
“clientData” format (not
string)

400
(bad request) invalid_request

Invalid parameter clientData

Invalid OTP 400
(bad request) invalid_otp The OTP is invalid

Invalid PIN 400
(bad request) invalid_pin The PIN is invalid

PIN locked 400
(bad request) invalid_request PIN locked

OTP locked 400
(bad request) invalid_request OTP locked

Sample Request

POST https://service.domain.org/csc/v0/credentials/authorize
Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA
Content-Type: application/json
{

"credentialID": "GX0112348",
"numSignatures": 2,
"hash":
[

"sTOgwOm+474gFj0q0x1iSNspKqbcse4IeiqlDg/HWuI=",
"c1RPZ3dPbSs0NzRnRmowcTB4MWlTTnNwS3FiY3NlNEllaXFsRGcvSFd1ST0="

],
"PIN": "12345678",
"OTP": "738496",
"clientData": "12345678"

}

Sample Response

HTTP/1.1 200 OK
{

"SAD": "_TiHRG-bAH3XlFQZ3ndFhkXf9P24/CKN69L8gdSYp5_pw"
}

43 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

credentials/extendTransaction
Description: Extends the validity of a multi-signature transaction authorization by obtaining a new

SAD. This method shall be used in case of multi-signature transaction obtained by
invoking the signatures/signHash multiple times. It can also be used to renew a SAD,
before it expires, when signature operations take longer than the amount of time
returned in expiredIn by the credentials/authorize method. Expired SAD cannot be
extended. The SAD would also automatically expire when the maximum number of
authorized signatures specified in numSignatures is reached.

Input: This method allows the following parameters:

Parameter Presence Value Description
credentialID Required String The identifier associated to the credential.

SAD
Required String

The current Signature Activation Data. This token is
returned by the credentials/authorize or by the previous
credentials/extendTransaction methods.

clientData
Optional String

Arbitrary data from the Signature Application. It can be
used to handle a transaction identifier or other
application-specific data.

Output: This method returns the following parameters:

Parameter Presence Value Description
SAD Required String The new Signature Activation Data required to sign

multiple times with a single authorization.

Error Case Status Code Error Error Description

The authorization header
does not match the pattern
“Bearer [sessionKey]”

400
(bad request) invalid_request

The request is missing a required parameter,
includes an invalid parameter value, includes a
parameter more than once, or is otherwise
malformed.

Sample Request

POST https://service.domain.org/csc/v0/credentials/extendTransaction
Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA
Content-Type: application/json
{

"credentialID": "GX0112348",
"SAD": "_TiHRG-bAH3XlFQZ3ndFhkXf9P24/CKN69L8gdSYp5_pw",
"clientData": "12345678"

}

Sample Response

HTTP/1.1 200 OK
{

"SAD": "1/UsHDJ98349h9fgh9348hKKHDkHWVkl/8hsAW5usc8_5=",
}

44 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

credentials/sendOTP
Description: Start the online OTP generation mechanism associated with a credential and managed

by the Remote Service. This will generate a dynamic one-time password that will be
delivered to the user associated with the credential through an agreed communication
channel (e.g. SMS, email, etc.).
This method shall only be used with “online” OTP generators. In case of “offline” OTP,
the Signature Application should not invoke this method.

Input: This method allows the following parameters:

Parameter Presence Value Description

credentialID Required String The identifier associated to the credential.

clientData
Optional String

Arbitrary data from the Signature Application. It can be
used to handle a transaction identifier or other
application-specific data.

Output: This method returns no parameters.

Error Case Status Code Error Error Description

The authorization header
does not match the pattern
“Bearer [sessionKey]”

400
(bad request) invalid_request

The request is missing a required parameter,
includes an invalid parameter value, includes a
parameter more than once, or is otherwise
malformed.

Missing or not String
“credentialID” parameter

400
(bad request) invalid_request Missing (or invalid type) string parameter

credentialID
Invalid “credentialID”
parameter

400
(bad request) invalid_request Invalid parameter credentialID

OTP locked 400
(bad request) invalid_request OTP locked

Sample Request

POST https://service.domain.org/csc/v0/credentials/sendOTP
Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA
Content-Type: application/json
{

"credentialID": "GX0112348",
"clientData": "12345678"

}

Sample Response

HTTP/1.1 200 OK

45 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

signatures/signHash
Description: Calculate the remote digital signature of one or multiple hash values provided as an

input. This method requires providing credential authorization in the form of Signature
Activation Data (SAD). The Signature Application shall first obtain the SAD from any of
the credential/authorize or the oauth2/authorize methods, depending on the type of
supported authorization mechanisms associated with the credential, and shall pass it
as an input to this method. In case of multi-signature transactions, the SAD shall be
updated with credentials/extendTransaction every time this method is invoked until
the maximum number of authorized signatures has been generated.

Input: This method allows the following parameters:

Parameter Presence Value Description
credentialID Required String The identifier associated to the credential.

SAD Required String The Signature Activation Data returned by the Credential
Authorization methods.

hash Required Array of String One or more Base64-encoded hash values to be signed.

hashAlgo
Required

Conditional String

Specifies the OID of the algorithm used to calculate the
hash value(s), in case it’s not implicitly specified by the
signAlgo algorithm. Only hashing algorithms as strong or
stronger than SHA256 shall be used.

signAlgo
Required String

Specifies the OID of the algorithm to use for signing. It
shall be one of the values allowed by the credential as
returned in keyAlgo by the credentials/info method.

signAlgoParams
Required

Conditional String

Specifies the Base64-encoded of DER-encoded ASN.1
signature parameters, if required by the signature
algorithm. Some algorithms like RSA-PSS [RFC 3447] may
require additional parameters.

clientData
Optional String

Arbitrary data from the Signature Application. It can be
used to handle a transaction identifier or other
application-specific data.

Output: This method returns the following parameters:

Parameter Presence Value Description

signatures

Required Array of String

One or more Base64-encoded signed hash. In case of
multiple signatures, the signed hashes shall be returned
in the same order of the corresponding hashes provided
as an input parameter.

Error Case Status Code Error Error Description

The authorization header
does not match the pattern
“Bearer [sessionKey]”

400
(bad request) invalid_request

The request is missing a required parameter,
includes an invalid parameter value, includes a
parameter more than once, or is otherwise
malformed.

Missing or not String “SAD”
parameter

400
(bad request) invalid_request Missing (or invalid type) string parameter SAD

Invalid “SAD” parameter 400
(bad request) invalid_request Invalid parameter SAD

Missing or not String
“credentialID” parameter

400
(bad request) invalid_request Missing (or invalid type) string parameter

credentialID
Invalid “credentialID”
parameter

400
(bad request) invalid_request Invalid parameter credentialID

46 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

Missing or not Array “hash”
parameter

400
(bad request) invalid_request Missing (or invalid type) array parameter hash

Empty hash parameter 400
(bad request) invalid_request Empty hash array

Invalid Base64 hash element 400
(bad request) invalid_request Invalid Base64 hash string parameter

Missing or not String
“signAlgo” parameter

400
(bad request) invalid_request Missing (or invalid type) string parameter signAlgo

Missing or not String
“hashAlgo” parameter when
“signAlgo” is equal to
“1.2.840.113549.1.1.1”

400
(bad request) invalid_request

Missing (or invalid type) string parameter hashAlgo

Invalid “hashAlgo” parameter 400
(bad request) invalid_request Invalid parameter hashAlgo

Invalid “signAlgo” parameter 400
(bad request) invalid_request Invalid parameter signAlgo

When present, invalid
“clientData” format (not
string)

400
(bad request) invalid_request

Invalid parameter clientData

Invalid “hash” length 400
(bad request) invalid_request Invalid digest value length

The OTP used to generate the
“SAD” is invalid

400
(bad request) invalid_otp The OTP is invalid

Expired credential 400
(bad request) invalid_request Signing certificate

'O=[organization],CN=[common_name]' is expired.

Sample Request

POST https://service.domain.org/csc/v0/signatures/signHash
Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA
Content-Type: application/json
{

"credentialID": "GX0112348",
"SAD": "_TiHRG-bAH3XlFQZ3ndFhkXf9P24/CKN69L8gdSYp5_pw",
"hash":
[

"sTOgwOm+474gFj0q0x1iSNspKqbcse4IeiqlDg/HWuI=",
" c1RPZ3dPbSs0NzRnRmowcTB4MWlTTnNwS3FiY3NlNEllaXFsRGcvSFd1ST0="

],
"hashAlgo": "2.16.840.1.101.3.4.2.1",
"signAlgo": "1.2.840.113549.1.1.1",
"clientData": "12345678"

}

Sample Response

HTTP/1.1 200 OK
{

"signatures":
[

"KedJuTob5gtvYx9qM3k3gm7kbLBwVbEQRl26S2tmXjqNND7MRGtoew==",
"Idhef7xzgtvYx9qM3k3gm7kbLBwVbE98239S2tm8hUh85KKsfdowel=="

]
}

47 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

signatures/timestamp
Description: Generate a time-stamp token for the input hash value. The time-stamp token can be

generated directly by the RSSP or by a Time Stamping Authority connected to it.
The reason to implement this method instead of providing time-stamp services
through RFC 3161 protocols directly is to facilitate the creation of long-term validation
digital signatures and to support billing operations. In both cases, the RSSP provider
can offer pre-configured time-stamp services instead of requiring the Signature
Application to obtain time-stamp services from a different provider.

Input: This method allows the following parameters:

Parameter Presence Value Description
hash

Required String
The Base64-encoded hash value to be time stamped. The
Remote Service uses the input value to encode the
MessageImprint.hashedMessage value.

hashAlgo
Required String

Specifies the OID of the algorithm used to calculate the
hash value. The Remote Service uses the input value to
encode the MessageImprint.hashAlgorithm value.

nonce
Optional String

Specifies a large random number with a high probability
that it is generated by the Signature Application only
once.

clientData
Optional String

Arbitrary data from the Signature Application. It can be
used to handle a transaction identifier or other
application-specific data.

Output: This method returns the following parameters:

Parameter Presence Value Description
timestamp

Required String

The Base64-encoded time-stamp token as defined in RFC
3161 as updated by RFC 5816. If the nonce parameter is
included in the request then it shall also be included in
the time-stamp token, otherwise the response shall be
rejected.

Error Case Status Code Error Error Description
The authorization header
does not match the pattern
“Bearer [sessionKey]”

400
(bad request) invalid_request

The request is missing a required parameter,
includes an invalid parameter value, includes a
parameter more than once, or is otherwise
malformed.

Sample Request

POST https://service.domain.org/csc/v0/signatures/timestamp
Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA
Content-Type: application/json
{

"hash": "sTOgwOm+474gFj0q0x1iSNspKqbcse4IeiqlDg/HWuI=",
"hashAlgo": "2.16.840.1.101.3.4.2.1",
"clientData": "12345678"

}

Sample Response

48 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

HTTP/1.1 200 OK
{

"timestamp":
"MGwCAQEGCSsGAQQB7U8CATAxMA0GCWCGSAFlAwQCAQUABCCrCqnrjH0VxXyQQlfnFJRx1jjrviTs
7/GjKghr2AmluQIIVs5D8OUB4p4YDzIwMTQxMTE5MTEzMjM5WjADAgEBAgkAnWn2SSIWlXk="

}

49 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

13 Interaction among elements and components
The building blocks of a Remote Signature solution interact with the API methods described in this
specification according to the relations described in the following sections.

13.1 Acquire the context of a RSSP
<TBD – Describe the use of the info method>

13.2 RSSP service authorization using a username and password

50 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

13.3 RSSP service authorization using OAuth2 with Implicit Grant flow

13.4 RSSP service authorization using OAuth2 with Authorization Code flow
<TBD>

13.5 RSSP service authorization using OAuth2 with Client Credentials flow
<TBD>

51 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

13.6 Get the list of credentials available for a group or community of users

13.7 Create a remote signature with a credential protected by an implicit authorization
<TBD>

52 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

13.8 Create a remote signature with a credential protected by a PIN

53 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

13.9 Create a remote signature with a credential protected by an “offline” OTP

54 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

13.10 Create a remote signature with a credential protected by an “online” OTP

55 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

13.11 Create a remote signature with a credential protected by PIN and OTP

56 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

13.12 Create a remote signature with a credential protected by a biometric factor

57 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

13.13 Create multiple remote signatures from a list of hash values

58 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

13.14 Create a remote multi-signatures transaction

59 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

13.15 Create a remote signature with long-term validity profile

60 Cloud Signature Consortium Standard - Remote Signature Protocols and API v0

	Foreword
	Revision history
	Acknowledgements
	Introduction
	Legal notices
	1 Scope
	2 Requirements Language
	3 References
	3.1 Normative references
	3.2 Informative references

	4 Terms and definitions
	5 Conventions
	6 Architectures and use cases
	6.1 Supported architectures

	7 Entities and components of a Remote Signature solution
	8 Introduction to the Remote Service Protocols API
	8.1 Format and syntax of the API
	8.2 Remote Service Base URI
	8.3 Integrity and confidentiality
	8.4 Remote Service Information

	9 Authentication and authorization
	9.1 Service authorization and authentication
	9.2 Credential authorization
	9.3 OAuth 2.0 Authorization
	OAuth 2.0 Authorization Code [oauth2/authorize]
	OAuth 2.0 Implicit Grant [oauth2/authorize]

	10 Creating a Remote Signature
	10.1 Multi-signature Transactions

	11 Error handling
	11.1 Error messages

	12 The Remote Service APIs
	info
	auth/login
	auth/revoke
	oauth2/token
	credentials/list
	credentials/info
	credentials/authorize
	credentials/extendTransaction
	credentials/sendOTP
	signatures/signHash
	signatures/timestamp

	13 Interaction among elements and components
	13.1 Acquire the context of a RSSP
	13.2 RSSP service authorization using a username and password
	13.3 RSSP service authorization using OAuth2 with Implicit Grant flow
	13.4 RSSP service authorization using OAuth2 with Authorization Code flow
	13.5 RSSP service authorization using OAuth2 with Client Credentials flow
	13.6 Get the list of credentials available for a group or community of users
	13.7 Create a remote signature with a credential protected by an implicit authorization
	13.8 Create a remote signature with a credential protected by a PIN
	13.9 Create a remote signature with a credential protected by an “offline” OTP
	13.10 Create a remote signature with a credential protected by an “online” OTP
	13.11 Create a remote signature with a credential protected by PIN and OTP
	13.12 Create a remote signature with a credential protected by a biometric factor
	13.13 Create multiple remote signatures from a list of hash values
	13.14 Create a remote multi-signatures transaction
	13.15 Create a remote signature with long-term validity profile

		avalle@cloudsignatureconsortium.org
	2018-12-17T02:18:56-0800
	Cloud Signature Consortium VZW

