CLOUD
SIGNATURE
CONSORTIUM

Architectures and
protocols for remote
signature applications



Contents

Foreword
Revision history
Acknowledgements
Introduction
Intellectual Property Rights
Trademark notice
Essential Patents
Legal notices
1 Scope
2 Interpretation of Requirement Levels
3 References
3.1 Normative references
3.2 Informative references
4 Terms, definitions and abbreviations
4.1 Terms and definitions
4.2 Abbreviations
5 Conventions
5.1 Text conventions
5.2 Base6b4
6 Architectures and use cases
6.1 Supported architectures
7 Introduction to the remote service protocols API
7.1 Format and syntax of the API
7.2 Remote service base URI
7.3 Integrity and confidentiality
7.4 Remote service information
7.5 clientData parameter
7.6 Expressing algorithms
8 Authentication and authorization
8.1 Service authorization and authentication
8.2 Credential authorization
8.3 Explicit credential authorization
8.3.1 Authentication objects
8.4 OAuth 2.0 Authorization
8.4.1 Restricted access to authorization servers
8.4.2 oauth?2/authorize
8.4.3 oauth2/pushed_authorize
8.4.4 oauth2/token
8.4.5 oauth2/revoke
8.5 Authentication and authorization for electronic seals
8.5.1 Introduction
8.5.2 Service authorization and authentication for electronic seals
8.5.3 Credential authorization for electronic seals
9 Creating a remote signature
10 Error handling
10.1 Error messages
11 The remote service APls
11.1 info




11.2 auth/login
11.3 auth/revoke
11.4 credentials/list
11.5 credentials/info
11.6 credentials/authorize
11.7 credentials/authorizeCheck
11.8 credentials/getChallenge
11.9 credentials/extendTransaction
11.10 signatures/signHash
11.11 signatures/signDoc
11.12 signatures/signPolling
11.13 signatures/timestamp
12 JSON schema and OpenAPI description
13 Interaction among elements and components
13.1 Remote signing service authorization using Basic Authentication
13.2 Remote signing service authorization using OAuth2 with Authorization Code flow
13.3 Create a remote signature with a credential protected by a PIN
13.4 Create a remote signature with a credential protected by an “online” OTP (based
on SMS)
13.5 Create a remote signature with a credential protected by a mobile app
13.6 Create a remote signature with a credential protected by a PIN and an “online” OTP
(based on SMS)
13.7 Create a remote signature with a credential protected by OAuth2 with
Authorization Code flow
13.8 Create a remote signature with credential and signature qualifier with OAuth2
Authorization Code flow
13.9 Create a remote signature with OAuth2 Authorization Code flow and Pushed and
Rich Authorization Request
13.10 Create a remote signature with a credential protected by RSSP-managed
authorization
13.11 Create multiple remote signatures from a list of hash values
13.12 Create a remote multi-signatures transaction with a PDF document
14 Change history
14.1 Changes since version 1.0.4.0

Foreword

This document is a work by members of the Cloud Signature Consortium, a nonprofit association
founded by industry and academic organizations for building upon existing knowledge of solutions,
architectures and protocols for Cloud-based Digital Signatures, also defined as “remote” Electronic
Signatures.

The Cloud Signature Consortium has developed the present specification to make these solutions
interoperable and suitable for uniform adoption in the global market, in particular — but not
exclusively — to meet the requirements of the European Union's Regulation 910/2014 on Electronic
Identification and Trust Services (elDAS) [i.1], which formally took effect on 1 July 2016.

Revision history



0.1.7.9-PR 14/02/2017 Public Pre-Release for early implementations
1.0.2.4-PR 24/09/2018 V1 Pre-Release for public comments

1.0.3.0 13/12/2018 V1 Public Release

1.0.4.0 28/06/2019 V1 Updated with new IPR information and errata
2.0.0.0 25/03/2022 V2 Pre-Release for public comments

2.0.0.1 19/08/2022 V2 Pre-Release after solving public comments
Acknowledgements

This work is the result of the contributions of several individuals from the Technical Working Group
of the Cloud Signature Consortium and some additional contributors. In particular, the following
people have provided a significant contribution to the drawing up and revision of the present
specification:

Atta Stoliarowa-My¢, Andrea Rock, Andrea Valle, Andrew Papastefanou, Andreas Vollmert, Arno
Fiedler, Bernd Wild, Carlos Ares, Cornelia Enke, Daniel Fett, David Ruana, Davide Barelli, Enrico
Entschew, Francesco Barcellini, Franck Leroy, Giuliana Marzola, Giuseppe Damiano, Harald Bratko,
Havard Grindheim, Ifiigo Barreira, Jon @lnes, Kapil Khattar, Dr. Kim Nguyen, Klaus-Dieter Wirth, Luca
Boldrin, Luigi Rizzo, Mangesh Bhandarkar, Marc Kaufman, Marcin Szulga, Meena Muralidharan,
Michael Traut, Patrycja Wiktorczyk, Patryk Sosinski, Peter Lipp, Prof. Reinhard Posch, Thomas
Pielczyk, Torsten Lodderstedt.

Introduction

For a long time, transactional e-services have been designed for typical end-user devices such as
desktop computers and laptops. Accordingly, existing digital signature solutions are tailored to the
characteristics of these devices as well. This applies to smart card and USB token-based solutions.
These traditional signature solutions implicitly assume that the user accesses e-services from a
desktop or laptop computer and in addition uses a smart card or token to create any required digital
signatures. This assumption is not valid any longer. During the past few years, smartphones, tablets
and other mobile end-user devices have started to replace desktop and laptops computers.

This situation raises several challenges for e-services: smart cards and tokens cannot be easily
connected to smartphones and other mobile devices, or cannot at all. For instance, smartphones
usually do not provide support for USB devices, which is the common technology for smart card
based solutions.

In this regard, recent regulations in various regions worldwide — like eIDAS [i.1] in the European
Union — have introduced the concept of electronic signatures that are created using a “remote
signature creation device”, which means that the signature device is not anymore a personal device
under the physical control of the user, but rather it is replaced by cloud-based services offered and
managed by a trusted service provider.

This is, in summary, the scope of the Cloud Signature Consortium, also known as CSC, aiming at the
definition of a common architecture, building blocks and communication protocols intended for
creating a standard API to integrate the essential components of a remote signature solution
established among different service providers and consumers.



Where the context of the eIDAS Regulation is applicable, this specification, and the term “remote
signature solution” herein developed, aim to cover solutions for remote electronic signatures and
remote electronic seals, in the domains of both qualified and advanced electronic signatures / seals.

Intellectual Property Rights

The Intellectual Property Rights Policy (IPR Policy) of the Cloud Signature Consortium is available at
https://cloudsignatureconsortium.org/ipr/.

Trademark notice

The Cloud Signature Consortium logo is a Registered Trademark of the Cloud Signature Consortium:
EU Trademark number 015579048.

Essential Patents

IPRs essential or potentially essential to the present document may have been declared to the Cloud
Signature Consortium. The information pertaining to these essential IPRs, if any, is available on
request from the Cloud Signature Consortium secretariat at info@cloudsignatureconsortium.com.

No investigation, including IPR searches, has been carried out by the Cloud Signature Consortium. No
guarantee can be given as to the existence of other IPRs not referenced in the present document
which are, or may be, or may become, essential to the present document.

Legal notices

The Cloud Signature Consortium seeks to promote and encourage broad and open industry adoption
of its standard.

©@®O

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International
License (CC BY-SA 4.0). To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative Commons, PO Box
1866, Mountain View, CA 94042, USA.

The present document does not create legal rights and does not imply that intellectual property
rights are transferred to the recipient or other third parties. The adoption of the specification
contained herein does not constitute any rights of affiliation or membership to the Cloud Signature
Consortium VZW.

This document is provided “as is” and the Cloud Signature Consortium, its members and the
individual contributors, are not responsible for any errors or omissions.


https://cloudsignatureconsortium.org/ipr/
mailto:info@cloudsignatureconsortium.com
http://creativecommons.org/licenses/by-sa/4.0/

The Trademark and Logo of the Cloud Signature Consortium are registered, and their use is reserved
to the members of the Cloud Signature Consortium VZW. Questions and comments on this
document can be sent to info@cloudsignatureconsortium.org.

1 Scope

When digital signatures are created within a device, the interfaces and functions are standardized,
e.g. the API used by the application program to access the signature creation libraries and the
interface to the smart card or similar device (if a device is used) holding the signing key. When digital
signatures move to the cloud, the functions needed to create a digital signature can be distributed
across several service instances, each carrying out one or more steps in the signature creation
process. The interfaces between such services are however until now not standardized.

The Cloud Signature Consortium aims to fill this gap in standardization by defining the architectural
design, communication protocols, application programming interfaces, data structures, and technical
requirements needed to establish interoperable solutions for cloud-based digital signatures. While
these specifications are applicable in a wide variety of use cases with different security
requirements, the fulfilment of requirements imposed by the eIDAS Regulation of the EU [i.1] is
particularly addressed, supporting the creation of “advanced” or “qualified” electronic signatures
and electronic seals in the cloud.

This document contains technical specifications that are intended for use by applications for creating
digital signatures in the cloud and by a variety of applications consuming these services. By
implementing their services according to these specifications, service providers can ensure that
services are applicable as parts of complete digital signature systems in the cloud in a plug and play
manner.

Existing standards and open specifications are considered by the consortium as far as applicable.
The following are out of scope of this specification:

* Policy requirements for (qualified and other) service providers; this is an area of
standardization covered by ETSI.

¢ Signing key creation and enrollment; although keys MAY be created by the remote service
during the signing workflow, these activities are not covered by specific APl methods.

e Signature and certificate formats; use of the standards specified by ETSI is RECOMMENDED.
¢ Signature validation; this will be addressed in future specifications from the Consortium.

¢ Security evaluation and requirements for hardware components used to hold signing keys
(HSM — hardware security module); this is being standardized by CEN in Europe and FIPS in the
USA.

¢ Internal functionality and internal interfaces in service provider systems.

Note that the current specifications mainly cover architectures where the signing key is held “in the
cloud”, i.e. by a signature creation device managed by a service provider. Architectures where the
signing key is in the hand of the signer, stored in the user’s device or in an attached smart card or
similar, are not covered as a particular case. The consortium will consider the need for further
specifications covering situations where a user device holding the signing key interacts with cloud


mailto:info@cloudsignatureconsortium.org

services for digital signature creation, e.g. cloud services MAY be used for document storage, hash
computation, and signature formatting.

2 Interpretation of Requirement Levels

The keywords “MUST”, “MUST NOT”, “REQUIRED"”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as
described in RFC 2119 [1].

3 References

3.1 Normative references

The following documents, in whole or in part, are normatively referenced in this specification and
are indispensable for its application. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments or
errata) applies.

[1] IETF RFC 2119: “Key words for use in RFCs to Indicate Requirement Levels”.
[2] IETF RFC 3161: “Internet X.509 Public Key Infrastructure Time-Stamp Protocol (TSP)”.
[3] IETF RFC 3986: “Uniform Resource Identifier (URI): Generic Syntax”.

[4] IETF RFC 4514: “Lightweight Directory Access Protocol (LDAP): String Representation
of Distinguished Names”.

[5] IETF RFC 4627: “The application/json Media Type for JavaScript Object Notation
(JSONY)”.

[6] IETF RFC 4648: “The Basel6, Base32, and Base64 Data Encodings”.
[7] IETF RFC 5246: “The Transport Layer Security (TLS) Protocol Version 1.2”.

[8] IETF RFC 5280: “Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile”.

[9] IETF RFC 5646: “Tags for Identifying Languages”.

[10] IETF RFC 5816: “ESSCertIDv2 Update for RFC 3161”.

[11] IETF RFC 6749: “The OAuth 2.0 Authorization Framework”.

[12] IETF RFC 6750: “The OAuth 2.0 Authorization Framework: Bearer Token Usage”.
[13] IETF RFC 7009: “OAuth 2.0 Token Revocation”.

[14] IETF RFC 7235: “Hypertext Transfer Protocol (HTTP/1.1): Authentication”.

[15] IETF RFC 7518: “JSON Web Algorithms (JWA)”.



[16] IETF RFC 7519: “/SON Web Token (JWT)".

[17] IETF RFC 7521: “Assertion Framework for OAuth 2.0 Client Authentication and
Authorization Grants”

[18] IETF RFC 8017: “PKCS #1: RSA Cryptography Specifications Version 2.2”.
[19] IETF RFC 8446: “The Transport Layer Security (TLS) Protocol Version 1.3”.
[20] IETF draft-ietf-oauth-security-topics: “OAuth 2.0 Security Best Current Practice”

[21] ETSI TS 119 312: “Electronic Signatures and Infrastructures (ESI); Cryptographic
Suites”.

[22] ISO 3166-1: ” Codes for the representation of names of countries and their
subdivisions — Part 1: Country codes”.

[23] IETF RFC 8414: “OAuth 2.0 Authorization Server Metadata”
[24] IETF RFC 7591: “OAuth 2.0 Dynamic Client Registration Protocol”
[25] IETF RFC 7636: “Proof Key for Code Exchange by OAuth Public Clients”

[26] IETF RFC 8705: “OAuth 2.0 Mutual-TLS Client Authentication and Certificate-Bound
Access Tokens”

[27] IETF Draft draft-ietf-oauth-rar: “OAuth 2.0 Rich Authorization Requests”
[28] IETF Draft draft-ietf-oauth-par: “OAuth 2.0 Pushed Authorization Requests”

[29] ETSI EN 319 122-1 “Electronic Signatures and Infrastructures (ESI); CAdES digital
signatures; Part 1: Building blocks and CAdES baseline signatures” :::

[30] ETSI EN 319 132-1: “Electronic Signatures and Infrastructures (ESI); XAdES digital
signatures; Part 1: Building blocks and XAdES baseline signatures”

[31] ETSI EN 319 142-1: “Electronic Signatures and Infrastructures (ESI); PAdES digital
signatures; Part 1: Building blocks and PAdES baseline signatures”

[32] ETSI TS 119 182-1: “Electronic Signatures and Infrastructures (ESI); JAdES digital
signatures; Part 1: Building blocks and JAdES baseline signatures”

[33] IETF RFC 6960: “X.509 Internet Public Key Infrastructure Online Certificate Status
Protocol - OCSP”

3.2 Informative references

The following documents, in whole or in part, are informatively referenced in this specification and
may be a useful contribution for its application. For dated references, only the edition cited applies.
For undated references, the latest edition of the referenced document (including any amendments
or errata) applies.

[i.1] Regulation (EU) No 910/2014 of the European Parliament and of the Council of 23
July 2014 on electronic identification and trust services for electronic transactions in the



internal market and repealing Directive 1999/93/EC.

[i.2] ETSI SR 019 020: “The framework for standardization of signatures; Standards for
AdES digital signatures in mobile and distributed environment”.

[i.3] IETF RFC 3447: “Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography
Specifications Version 2.1”.

[i.4] IETF RFC 6101: “The Secure Sockets Layer (SSL) Protocol Version 3.0”.

[i.5] CEN EN 419 241-1: “Trustworthy Systems Supporting Server Signing - Part 1:
General System Security Requirements”

[i.6] ISO/IEC 19790: “Information technology - Security techniques - Security
requirements for cryptographic modules”

[i.7] Hickman, Kipp, “The SSL Protocol”, Netscape Communications Corp., Feb 9, 1995

[i.8] ETSI TS 119 001: “Electronic Signatures and Infrastructures (ESI); The framework for
standardization of signatures; Definitions and abbreviations.

[i.9] ETSI TS 119 312: “Electronic Signatures and Infrastructures (ESI); Cryptographic
Suites.

[i.10] South African Act No. 25 of 30 August 2002: Electronic Communications and
Transactions Act, 2002

[i.11] Web Authentication: An API for accessing Public Key Credentials Level 2, 2021

[i.12] OpenlID Connect Core 1.0 incorporating errata set 1, 2014

4 Terms, definitions and abbreviations

4.1 Terms and definitions

For the purposes of this specification, the following terms and definitions apply.

access token: credentials used to access protected resources. It’s a string representing an
authorization issued to the client. The string is usually opaque to the client.

Note 1: As defined in IETF RFC 6749 [11].
authentication factor: piece of information and/or process used to authenticate or verify the
identity of an entity.

Note 2: As defined in ISO/IEC 19790 [i.6].

EXAMPLE: A password or PIN.

authorization server: The server issuing access tokens to the client after successfully authenticating
the resource owner and obtaining authorization.



Note 3: As defined in IETF RFC 6749 [11].

credential: cryptographic object and related data used to support remote digital signatures over the
Internet. Consists of the combination of a public/private key pair (also named “signing key” in CEN
EN 419 241-1 [i.5]) and a X.509 public key certificate managed by a remote signing service provider
on behalf of a user.

digital signature: data appended to, or a cryptographic transformation (see cryptography) of a data
unit that allows a recipient of the data unit to prove the source and integrity of the data unit and
protect against forgery e.g. by the recipient [i.8]

Note 4: Digital signature is a technical term. Specifically, but not exclusively, aims at supporting legal
terms as electronic signatures, advanced electronic signatures, qualified electronic signatures,
electronic seals, advanced electronic seals, and qualified electronic seals as per Regulation (EU)
No 910/2014 [i.1].

electronic signature: digital signature created by using a certificate issued to a natural person
ensuring the integrity and origin of the document and the signatory commitment to the document
content. ::: {_NOTE} Electronic signatures used in the present document are meant to specifically, but
not exclusively, support the electronic signatures defined as per Regulation (EU) No 910/2014 [i.1].

electronic seal: digital signature created by using a certificate issued to a legal person or business
unit ensuring the integrity and origin of the document, without necessarily committing to the
content.

Note 5: Electronic seals used in the present document are meant to specifically, but not exclusively,
support the electronic seals defined as per Regulation (EU) No 910/2014 [i.1].

identity proofing: process by which the identity of an applicant is verified by the use of evidence
attesting to the required identity attributes

Note 6: Depending on how the claims will be used, different assurance levels will be required when
verifying the claims.

remote service: service implementing the API described in this specification and delivered on the
Internet.

remote signing service provider: service provider managing a set of credentials on behalf of
multiple users and allowing them to create a remote signature with a stored credential.

Note 7: A remote signing service provider typically operates an HSM (or functionally equivalent
multi-user secure device) and an authentication service. It manages the users and provides a
signing service that can be accessed over the Internet by means of the API described in this
specification.

Note 8: A remote signing service typically manages signing keys and certificates that are created
before the signing operations take place. Another common scenario is when the signing key and
the certificate are created in the course of a signing operation. In the present specification, this



is referred to as “Short-Lived Credential Signing” (also called “ad-hoc” or “on-the-go” credential
signing).

remote signature creation device: signature creation device used remotely from signer perspective
to provide control of signing operation on its behalf of the signer.

short lived credentials: temporary credentials created to sign a specific transaction where those
credentials will then expire or be explicitly revoked shortly after being applied in the signature
operation. Methods to create and manage short lived credentials across multiple transactions will be
handled in a future release of this specification.

::: {_NOTE} Once the end-user has had their claims successfully verified in an identity proofing
process, they become eligible to sign with short-lived credentials. The assurance level of the claims
associated with the identity will determine the trust level that can be achieved with the short-lived
credentials.

signature activation data: set of data used to control a given signature operation, performed by a
cryptographic module, on behalf of the signer.

signature activation module: configured software that uses the SAD in order that the signing keys
are used under sole control of the signer.

Note 9: As defined in CEN EN 419 241-1 [i.5].
signature application: client application or service calling the remote signing service provider to
create a remote signature.

signature application provider: service provider managing a signature application and offering it as a
service over the Internet or other communication channel.

4.2 Abbreviations

AdES: Advanced Electronic Signature
API: application programming interface
HSM: hardware security module

RSCD: remote signature creation device
RSSP: remote signing service provider
SAD: signature activation data

SAM: signature activation module
SCAL1: sole control assurance level 1

Note 10: As defined in CEN EN 419 241-1 [i.5].

SCAL2: sole control assurance level 2



Note 11: As defined in CEN EN 419 241-1 [i.5].

SDR: signer’s document representation

5 Conventions

5.1 Text conventions

This specification adopts the following text conventions to help identify various types of information.

Table 1 — Text conventions

Text convention Example

The vertical bar ( | ) indicates a possible value for selection or outcome and SHALL be YES | NO

“_n

interpreted as “or”.

Text in colored boxes is example code.

POST
/csc/v2/credentials/info
HTTP/1.1

Bold text indicates the name of an APl method. credentials/list

Italic text indicates the name of an APl input or output parameter. access_token

In general, APl names as well as APl input or output parameters defined in this specification use the
“camelCase” notation, like authType or credentials/extendTransaction. However, names and
parameters that are defined in other standards, like those in the domain of authentication and
related to OAuth 2.0, are used here in their original format to facilitate understanding and
interoperability, using “snake_case”, like refresh_token, i.e., two names separated by an underscore.

5.2 Baseb4

When data is required to be Base64-encoded, it SHALL be encoded as “base64” as defined in RFC
4648 [6]. To avoid JSON representation issues line breaks SHALL NOT be used within Base64-
encoded data. When data is base64url-encoded it SHALL be encoded as “base64url” as defined in
RFC 4648 [6].

6 Architectures and use cases

The present specification and the protocols defined herein aim to support different use cases.
However, they focus on the scenario of remote signing defined for example as “the creation of
remote electronic signatures, where the electronic signature creation environment is managed by a
trust service provider on behalf of the signatory” in EU Regulation 910/2014 [i.1], whereas §52.

This means that other scenarios for signing in distributed environments assisted by remote servers —
like those described in ETSI SR 019 020 [i.2](“Standards for AdES digital signatures in mobile and
distributed environment”) — are not covered in the present version of this specification. In particular,
use cases where the signing key is contained within a signer's personal device are not covered: for
example, signing a document located on a server with a private key contained in a mobile SIM card,



or in a cryptographic device connected to a personal computer. These are relevant use cases,
although not fitting in the core definition of “remote signature”, so they may be specifically covered
in future updates of the specification.

6.1 Supported architectures

The current version of the specifications focuses on the interface between the Signature Application
and the remote signing service provider. The following figure shows a typical but not restrictive
example of the architecture.

CornerA) RFC6960 [ Corner B
Signature Application RFC 3161 RA/CA/OCSP
TSA
J N
t .
1 Credential Signing key
1 binding creation
Web? : C C
Doc & user 1 orner
credentials : CSC protocol RSSP
1 RSCD
1
: Redirection Credential
“““““““ 1 authorization

;" Optional - Corner D\‘:

. OAuth2.0 | ) !
Signer Interface i ID Provider |
| !

Figure 1: Remote signing corners

There are four main corners in the remote signing scenario.

The Signature Application retrieves the document to be signed from the user, and, if needed the
certificates, revocation information and time-stamps from the corresponding trust service provider.
It requests the remote signing service provider to create the signature of the hash value.

The RSSP connects to the CA for the credential binding. In some cases, the CA may also be included
in the process of creating the signing key.

The authorization for service or credential access can be done either passing through the signature
application or using a redirection to an external OAuth 2.0 authorization server (AS). In many cases,
the authorization server is part of the RSSP.

The redirect-based model employed by OAuth allows the RSSP to utilize FIDO/WebAuth [i.11] or 3rd
party identity providers (e.g. via OpenlD Connect [i.12]) for user authentication.

7 Introduction to the remote service protocols API

Web applications and services use Application Programming Interfaces (APIs) to talk to each other.
Technically speaking, in the web service context, an APl is a set of programming instructions for
accessing a Web-based software application or service.



The remote service protocols API allows a signature application to communicate with a remote
service via the Internet by leveraging a sequence of calls to methods.

7.1 Format and syntax of the API

This specification defines Web services APIs that are based on technical standards and protocols
such as HTTP and JSON. This APl uses HTTP POST requests with JSON payload and JSON responses.
JSON is an open-standard media type format as defined by RFC 4627 [5] that uses human-readable
text to transmit data objects consisting of attribute-value pairs. These properties make JSON an ideal
data-interchange language which is used as the most common data format for asynchronous
communications.

The functions offered by the remote service are represented by HTTP RPC endpoints accepting
arguments as JSON in the request body and returning results as JSON in the response body. For this
reason, the HTTP header of the invocation method SHALL include a Content-Type: application/json
header.

The remote service SHALL use HTTP version 1.1 or higher.

A JSON schema corresponding to the API defined in the present specification is available. See JSON
schema and OpenAPI description.

7.2 Remote service base URI

The remote service base URI defines the style and format of the HTTP endpoint URI of a remote
service conforming to this specification.

The base URI contains the version number of the APIs that is implemented by the remote signing
service provider. In the case of this specification, the version number SHALL be v2. Future versions of
this specification MAY not be completely backward compatible.

https://service.domain.org/xxx/csc/v2/

The base URI SHALL start with an arbitrary URL defined by the service provider
(‘https://service.domain.org/xxx’ in the example above) and SHALL end with ‘/csc/v2’. The endpoints
of the APl methods documented in this specification SHALL be concatenated to the base URI. An
exception is given by the OAuth 2.0 methods, as defined in OAuth 2.0 Authorization, which MAY use
URIs that are independent from the service base URI.

7.3 Integrity and confidentiality

A remote service conforming to this specification SHALL guarantee the integrity and confidentiality
of the communication channel between the signature application and the remote service.

The integrity and confidentiality of the communication channel between the user and the signature
application or the remote service are out of the scope of this specification.

The remote service SHOULD implement Transport Layer Security (TLS) in order to ensure the
integrity and confidentiality of the communications. This prevents easy eavesdropping or
impersonation if authentication credentials are hijacked. Another advantage of always using TLS is
that guaranteed encrypted communications simplifies the authentication schemes, so for example



simple mechanisms like Basic HTTP authentication can be used because the elements used in the
authentication (username and password) are always transmitted over an encrypted channel.

The remote service MAY use other methods than TLS, for example using VPN.

TLS 1.3 as described in RFC 8446 [19] is, at the time of this writing, the latest version of TLS. Until TLS
1.3 is widely adopted, the previous version TLS 1.2 as described in RFC 5246 [7] SHALL be supported
by remote services conforming to this specification and is the RECOMMENDED mechanism to use for
interoperability reasons. TLS 1.2 provides access to advanced cipher suites that support elliptic curve
cryptography and authenticated encryption with associated data (AEAD) block cipher modes. TLS 1.1
MAY be used, but it is also less secure. TLS 1.0 is considerably less secure and some security
certifications like PCI DSS 3.1 explicitly forbid it, so remote services SHOULD NOT support it.

All versions of SSL (SSLv3 as defined in RFC 6101 [i.4] or SSLv2 as defined in [i.7]), the security
protocol used before TLS, are considered insecure. Remote services conforming to this specification
SHALL NOT implement SSL.

7.4 Remote service information

This specification defines a protocol to connect a signature application to a remote service. Other
similar specifications exist in the industry, but they are typically proprietary and incompatible
between each other, so if a sighature application wants to support multiple remote services, then
the development effort would increase significantly.

This specification has been designed to support modular services that may be implemented in line
with the capacity and mission of the provider. This means that a remote service that supports this
specification MAY implement only a subset of the APl methods defined herein. In order to facilitate
this approach, this specification defines the info method, which all remote services SHALL
implement to allow the signature application to discover which of the APl methods are supported.

In addition, the info method returns information on the remote service which may be useful to a
calling application to access the functions and features of the service.

7.5 clientData parameter

Most methods allow to provide clientData as an optional input parameter. It can contain any
arbitrary data from the signature application. This data allows the signature application to handle
other application-specific data like, e.g., a transaction identifier.

The remote service MAY use this information and it MAY also log this data together with information
of the call. This parameter MAY expose sensitive data to the remote service. Therefore, it SHOULD
be used carefully by signature applications.

7.6 Expressing algorithms

The present document expresses algorithms via Object IDentifiers (OID). OIDs are identifiers
standardized by the Internal Telecommunication Union (ITU) and ISO/IEC to identify a specific object.
They are represented by numbers, separated by dots, and are constructed in a tree-like structure. A
list of the most common OIDs for algorithms used in signatures can be found in chapter 10 of ETSI TS
119 312 [i.9]. See also the OID repository http://oid-info.com in search of specific OIDs.



8 Authentication and authorization

This specification supports two types of authentication and authorization:
a. Service authorization and authentication.

b. Credential authorization.

8.1 Service authorization and authentication

In order to protect the remote service from unauthorized access, this specification requires the
signature application to obtain a valid “access token” to authorize the access to the APIs. This type of
authorization is called service authorization. Various types of authorization mechanisms can be
supported, and more will be supported in future versions, and the signature application SHALL adopt
any of those available from the remote service as stated in the response to the info method, as
defined in info.

The remote service MAY also adopt an indirect way of authorizing access to the API. The underlying
communication channel with the signature application MAY ensure access control in a different way,
for example with a private point-to-point LAN connection or through a VPN (Virtual Private
Network).

The access to the APls SHALL be authenticated. When the authentication is under the control of the
signature application provider, then the user SHALL be properly authenticated by this provider
before getting access to the remote service. This scenario supports organizations that manage a user
community with an existing form of authentication, for example a Bank managing the users from
their Internet Banking service. This means that, in order to retrieve the signing credentials
associated to a user, this organization would have to take care of the correspondence between the
user identifier in their own domain and the user identifier in the remote service’s domain.

When the authentication is under the control of the remote service, the signature application SHALL
perform a token-based authentication to the remote service by means of authentication factors
collected from the user, preferably via an OAuth 2.0 authorization mechanism, or through HTTP
Basic or HTTP Digest authentication. In case the signature application is not under the control of the
user, OAuth 2.0 authorization SHOULD be used. In practice, the signature application will require the
user to authenticate directly to the remote service using any of the available methods. This would
offer an authentication mechanism even in case the signature application and the remote service
have not previously established any form of service authentication.

Two methods are defined in this specification to obtain an access token to authorize the access to
the remote service API:

¢ The oauth2/token method SHALL be used when an OAuth 2.0 authorization mechanism is
supported by the remote service. The signature application will not collect any authentication
factors from the user, but instead it will redirect to the remote service that will authenticate
the user. See OAuth 2.0 Authorization for further information on how to implement OAuth 2.0
authorization.

* The auth/login method SHALL be used when OAuth 2.0 is not available and HTTP Basic or
Digest authentication mechanisms are preferred and supported by the remote service. The



signature application will collect the authentication factors from the user and will submit them
to the remote service to obtain an authorization.

In both cases, if the user grants the authorization, the remote service will return a service access
token to the signature application. From then on, all authenticated requests to the APl methods
defined in this specification SHALL use an Authorization header with Bearer type followed by that
service access token.

If the user does not grant the authorization, the authorization server will return an error message
and no access to authenticated APl methods will be possible.

8.2 Credential authorization

Accessing a credential for remote signing requires an authorization from the user who owns the
signing key associated to it. As a special case, the user might also authorize the creation of one or
more signatures along with a signature qualifier instead of a particular credential identification. This
is especially useful in conjunction with short-lived credentials.

The remote service can manage the authorization in multiple ways, with different technologies and a
variable number of authorization factors. This really depends on the implementation and on the
policy adopted by the remote service, and MAY also be determined by the level of compliance to
industry and regulatory requirements, like in the case of standards like CEN EN 419 241-1 [i.5], which
defines different “sole control assurance levels”, SCAL1 and SCAL?2.

For a precise description of the difference between SCAL1 and SCAL2 we refer to CEN EN 419 241-1
[i.5]. However, with regards to this specification, two aspects should be noted about SCAL2:

1. The signature activation data, used to authorize a signature, is linked to the document or the
documents to be signed.

2. A two-factor authorization is needed to authorize a signature.

Two different types of credential authorization are defined and supported in this specification:
* Explicit authorization
* OAuth 2.0 authorization

Explicit authorization means that the remote service relies on the signature application to collect, in
its own environment, authentication factors like PIN or One-Time Passwords (OTP), according to the
parameters returned by the credentials/info method, as defined in credentials/info. This method
returns the type, format and combination of required or optional authentication factors, such that
the signature application could show the proper interactive controls to collect them from the user.

A common type of explicit authorization is based on a static PIN - typically defined by the user -
associated to the signing key when it is generated. To increase the level of assurance of user control,
ensuring that only the authorized user could create a signature with a certain credential, a stronger
authorization factor MAY be adopted. A dynamically generated text-based One-Time Password (OTP)
is a common strong authorization mechanism. This specification directly supports the combination
of various mechanisms which can be used complementary to service authorization to achieve the
highest levels of assurance of the user’s sole control, and can be used to support SCAL1 and SCAL2
as defined in CEN 419 241-1 [i.5].



Biometric authentication and phone call drop are other examples of possible authorization
mechanisms. As these and other authorization mechanisms require a very peculiar user interface,
they can be supported by means of an OAuth 2.0-based authorization scheme.

8.3 Explicit credential authorization

To be able to support the broadest range of authorization mechanisms, this specification provides a
generic way to define access control to credentials. Each credential is associated with a set of
authentication object types and an access rule describing the precondition to authorize the
credential access.

8.3.1 Authentication objects

An authentication object type describes the data structure and protocol of authentication
mechanisms, much the same way as it is done in the PKCS#15 standard. Authentication object types
are returned by the credentials/info method, such that the Signature Application can show the
proper interactive controls to collect them from the user.

Each authentication object type is associated with a type property, defining both the data structure
that a client application SHALL provide and the protocol that SHALL be processed. The id property is
used to identify the associated authentication object type in a concrete authentication object data
structure.

The number and type of authentication object types is provider specific.

Depending on the authentication object type the Signature Application collects concrete
authentication object data and drives the associated protocol. The authentication object data is sent
using the method credentials/authorize.

The following is an example authentication object type, describing the need for a password entry:

{
"type": "Password",
"id": "PIN",
"label": "Personal PIN",
"format" : "A"

}

This indicates to the client that it needs to send an alphanumeric password within a later
authorization request, identifying it as “PIN”. When requesting user input, the client may present the
required data as “Personal PIN” to the user.

In consequence, the client might send an authentication object as seen in the following example:

{
"id": "PIN",
"value": "1234"
¥

This example assumes that the client has received a PIN value of “1234”, which is conveyed to the
authorization endpoint.

See the following sections for a thorough description of these data structures.



8.3.1.1 Out-of-band response

“Out-of-band response” is used here whenever an authentication object is sent to the service
provider by using some protocol and session not associated and described in this APl specification.
This can be for example a SMS, phone or email channel.

With an out-of-band response the call to credentials/authorize does not have any knowledge about
the state of the out-of-band task. Processing of the call can be implemented using a polling or
blocking approach. As such, the processing can either

¢ terminate with a HTTP 200, returning the specified result tokens.

* terminate with a HTTP 202 as an indication that the out-of-band result is not yet available. The
client has to re-issue a request to credentials/authorizeCheck (polling). Eventually the request
will terminate with an error or HTTP 200.

8.3.1.2 Common properties

The following properties are common to all authentication object types as they are received from
credentials/info.

Name Presence Description

type REQUIRED | The type of the authentication object. This describes the data structure and protocol. The value
SHALL be one of the tokens defined in this specification. A provider MAY not support all token
types.

id REQUIRED | The unique identifier of the authentication object.

label OPTIONAL | A label to be presented to the user. It is used to identify the requested authentication data in
human readable manner.

description | OPTIONAL | A description to be presented to the user. It carries instructions on how to provide the
authentication data.

The following properties are common to all authentication objects as they are sent via
credentials/authorize.

Presence Description

id REQUIRED The unique identifier of the authentication object.

8.3.1.3 Password, in band response

The Password type simply requires the client to collect authentication information from the user and
send it to the provider in-band.

Be aware that from a provider point of view an OTP generated statically / offline by a client side
token is simply a “Password” type, too.

This authentication object type allows for the definition of - Simple password authentication -
“offline” OTP generation - Combinations thereof, e.g. the requirement of having two PINs entered (4
eyes).

Authentication type properties:

Name Presence Value Description



Name Presence Value Description

type REQUIRED | “Password”

format OPTIONAL | “A” | “N” Specifies the format of the password: - “A”: alphanumeric text; allowed characters: A-
Z | a-z | 0-9 - “N”: numeric text If omitted, any character is allowed.

generator | OPTIONAL | String If a client side device or algorithm is needed to derive the password, it can be
referenced by this property. E.g. a trust service provider can have issued multiple
tokens and allows the user to identify the required one using this property.

Authentication object properties:

Presence Description

value REQUIRED The concrete password value.

Example | authentication type:

{
"type": "Password",
"id": "PIN",
"label": "PIN",
"format" : "N"

}

Example | authentication object:

{
"id": "PIN",
"value": "1234"
}

Example Il authentication type:

{
"type": "Password",
"id": "OTP",
"label": "OTP",
"generator" : "b23",
"format" : "A"

}

Example Il authentication object:

{
"id": "OTP",
"value": "3rfd45s"

8.3.1.4 Password, out of band response

The PasswordOOB indicates that by some unspecified mechanism an authentication object is sent to
the service provider.

This authentication object type allows for the definition of - SMS, phone or email authorization -
Provider-specific authorization without user agent intervention

Authentication type properties:



Name Presence Value Description

type REQUIRED | “PasswordOOB”

generator | OPTIONAL | String If a client side device or algorithm is needed to derive the password, it can be
referenced by this property. E.g. a trust service provider can have issued
multiple tokens and allows the user to select one of them using this property.

Authentication object properties:

Presence Description

An empty authentication object is required to indicate to the server that some out-of-band data
must be acquired for this authorization.

Example authentication type:

{
"type": "PasswordOOB",
"id": "PIN2",
"label™: "PIN2"

}

Example authentication object:

{
"id": "PIN2"
}

8.3.1.5 ChallengeResponse, in band response

The authorization process may be based on a challenge response protocol where the response is
created by a client side mechanism. The mechanism itself is out of scope for this specification. The
response is then sent via credentials/authorize in-band.

This is typically used where - the user is in possession of a token that requires input of a challenge
and provides a OTP that needs to be sent to the service as a response. - A literal challenge is sent to
the user via SMS, email or other out of band channel to be sent to the service as a response.

Authentication type properties:

Name Presence Value Description

type REQUIRED | “ChallengeResponse”

format OPTIONAL | “A”|“N” Specifies the format of the password: - “A”: alphanumeric text; allowed
characters: A-Z | a-z | 0-9 - “N”: numeric text If omitted, any character is
allowed.

generator | OPTIONAL | String If a client side device or algorithm is needed to derive the password, it can
be referenced by this property. E.g. a trust service provider may have
issued multiple tokens and allows the user to select one of them using this
property.

Authentication object properties:

Name Presence Description



Presence Description

value REQUIRED The concrete response value.

This authentication object type requires the signature application to request a challenge from the
service provider using credentials/getChallenge. The credentials/getChallenge method needs the id
of the authentication object to decide which challenge to generate. The reply is either - the
challenge itself, using a HTTP status code 200. In this case, the signature application is required to
display the challenge in order to inform the user and prepare her to derive the response. - A HTTP
status code 201. The challenge is sent out of band to the user. The signature application only
provides means to enter the response for the user.

Example authentication type

{
"type": “ChallengeResponse”,
n id n : (roTP)) .
"label": “OTP”

}

Example authentication object

{
"id": “OTP”,
"value": “sadf8aef”

-

8.3.1.6 ChallengeResponse, out of band response

The authorization process is based on a challenge response protocol where the response is created
by a client-side mechanism. The mechanism itself is out of scope for this specification. The response
is then sent via some out of band mechanism that is again outside the scope of this specification.

Authentication type properties:

Name Presence Value Description
type REQUIRED | “ChallengeResponseO0OB”
generator | OPTIONAL | String If a client side device or algorithm is needed to derive the password, it

can be referenced by this property. E.g. a trust service provider may
have issued multiple tokens and allows the user to select one of them
using this property.

Authentication object properties:

Name Presence Description

There is no data sent in band.

This authentication object type requires the signature application to request a challenge using
credentials/getChallenge. The credentials/getChallenge method needs the id of the authentication
object to decide which challenge to generate. The reply is either - the challenge itself, using a HTTP
status code 200. In this case, the signature application is required to display the challenge in order to
inform the user and prepare him to derive the response. - A HTTP status code 201 The challenge is
sent out of band to the user. The signature application only provides means to enter the response
for the user.



Example authentication type

{
"type": “ChallengeResponse00B”,
"id": “SMS”.
"label": “SMS*

}

Example authentication object

{
n j.d n : “SMS”
}

An empty authentication object is required to indicate to the server that some out-of-band data
must be acquired for this authorization.

8.4 OAuth 2.0 Authorization

OAuth 2.0 is an authorization framework that enables applications to obtain access to HTTP based
services. It provides client applications a “secure delegated access” to server resources on behalf of a
resource owner. In the context of this specification, the signature application is the client application.
This allows resource owners to authorize third-party access to their server resources without sharing
their credentials.

Using the OAuth 2.0 authorization scheme, the signature application will use the remote service’s
authorization server for user authentication and access authorization. After a successful
authentication and authorization, the authorization server of the remote service will provide the
signature application with an access token that the signing application will use to authorize access to
the remote service’s resources.

The following OAuth 2.0 grant types as defined in RFC 6749 [11] MAY be used:

e Authorization Code
¢ (Client Credentials
e Refresh Token

The implicit grant SHALL NOT be used, due to security flaws.

Any provider implementing an OAuth 2.0 authorization flow SHALL follow the recommendations
from OAuth 2.0 Security Best Current Practice [20]. The OAuth 2.0 authorization mechanisms can be
used for different use cases, determined by the respective scope.

The following scopes are defined by this specification:

e “service” - used to request service authorization

e “credential” - used to request authorization for creating one or more signatures with a certain
credential or fufiling the requirements of a certain signature qualifier.

An access token with the “credential” scope can be used instead of a classical “SAD” as obtained via

credentials/authorize or credentials/extendTransaction. Such an access token will be sent to the

remote signing APl in the AUTHORIZATION header. For backward compatibility, it can also be sent as

“SAD” parameter value.



An access token with the “credential” scope also includes the service authorization for the requests
credentials/info, signatures/signHash, signatures/signDoc in conjunction with the respective
credential or for the request signatures/signDoc in conjunction with the respective credential
gualifier. As a consequence, an application that has obtained an access token for scope “credentia
does not need an additional access token with scope “service” in order to use these requests.

III

This is useful if the application already has all the information required by signature/signDoc or
signature/signHash and wants to save the additional roundtrip for service authorization. Using
signature/signDoc with a signature qualifier to create signatures is one example. In this case, the
signing application does not need to lookup the available certificates before starting the credential
authorization process.

Note 12: In the course of authorizing the “credential” scope, the authorization server authenticates
the client and conveys the client identity in the respective access token (which is equivalent to
the service authorization).

A remote service can implement a single OAuth 2.0 authorization server supporting all
beforementioned scopes (and possibly more) or just some of them.

In order to be able to use an OAuth 2.0 authorization mechanism, the signing application needs to
be in possession of an OAuth client_id valid for the respective OAuth authorization server and
corresponding credentials. The way this client_id is setup and the client authentication mechanism
used is out of scope for this specification. Implementations can utilize any of the client
authentication methods defined in the IANA “OAuth Token Endpoint Authentication Methods”
registry established by IETF RFC 7591 [24].

The following sections describe the OAuth 2.0 endpoints supported by this specification and how to
invoke them. Notice that the Client Credential flow is not described separately because it can be
invoked by means of the oauth2/token endpoint, as defined in cauth2/token, using a grant_type
with value “client_credentials”.

Tokens issued by OAuth 2.0 authorization endpoints SHOULD be revoked by using the authorization
server’s revocation endpoint oauth2/revoke, as defined in cauth2/revoke, if supported. Tokens MAY
also be revoked by calling the remote service’s auth/revoke method, as defined in auth/revoke, if
supported.

The info method, as defined in info, provides the signing application with the OAuth endpoints
location information. There are two options for the remote service:

* the parameter oauth2 provides a base URL for all OAuth 2.0 endpoints. The URI path
components of the supported OAuth 2.0 endpoints specified in oauth2/authorize,
oauth2/pushed_authorize, oauth2/token, and cauth2/revoke SHALL be concatenated to the
OAuth 2.0 base URI.

* the parameter oauth2Issuer provides the issuer URL of authorization server. The signing
application SHALL obtain all endpoint URLs and further metadata about the OAuth
authorization server as specified in IETF RFC 8414 “OAuth 2.0 Authorization Server Metadata”
[23]. This prevents security (trustworthiness of endpoints) and operational (endpoints change)
issues.

Note 13: OAuth in conjunction with the authorization code flow gives the authorization server full
screen control in the course of the authorization process. This allows the authorization server to
utilize user authentication means at its own discretion without the need for this specification to



cater for certain authentication means. This, for example, allows authorization servers to utilize
FIDO/WebAuth [i.11] for strong and (optionally) password less authentication. The
authorization server may use the WebAuthn API as exposed by the user agent to authenticate
the user based on the keys maintained in the platform or external authenticator.

8.4.1 Restricted access to authorization servers
OAuth 2.0 authorization frameworks typically offer an open and unrestricted authorization endpoint.

In the context of the authorization server of a remote service, this means that a user will have no
restrictions while accessing the oauth2/authorize endpoint, as defined in cauth2/authorize.

However, a remote service may need to restrict users from accessing its authorization server. There
are two common cases when a restriction would be desirable: with remote services connected to
Corporate Identity Management services or connected to public Electronic Identity (elD)
frameworks. In the former case, the remote service may be required to prevent access to users that
are not affiliated with the Corporate, in the latter the remote service may be restricted to avoid
abuse by unauthorized users.

To restrict access to the authorization server of a remote service, this specification introduces the
additional account_token parameter to be used when calling the oauth2/authorize endpoint. This
parameter contains a secure token designed to authenticate the authorization request based on an
Account ID that SHALL be uniquely assigned by the signature application to the signing user or to the
user’s application account.

In case a RSSP wants to provide restricted access to its authorization server, it SHOULD register in
advance the Account ID of the authorized users that need to have access to the oauth2/authorize
endpoint.

The means and actions required to exchange and register an Account ID between users and the RSSP
are out of the scope of this specification.

The account_token parameter is based on a JSON Web Token (JWT), defined as follows, according to
the RFC 7519 [16]:

account_token = base64UrlEncode(<JWT_Header>) + "." +
base64UrlEncode(<JWT_Payload>) + "." +
base64UrlEncode(<JWT_Signature>)

JWT_Header

<JWT_Header> = {

"typ": "IWT",
"alg": "HS256"
}
JWT_Payload

<JWT_Payload> = {
"sub": <Account_ID>,
"iat": <Unix_Epoch_Time>,
"jti": <Token_Unique_Identifier>,
"iss": <Signature_Application_Name>,
"azp": <OAuth2_client_id>



JWT_Signature

<JWT_Signature> =
base64UrlEncode(<JWT_Header>) + "." +
base64UrlEncode(<JWT_Payload>),
SHA256 (<O0Auth2_client_secret>)

HMACSHA256 (

)
Parameters
Parameter Presence Value Description
typ REQUIRED | String | The Header Parameter used to indicate that this object is a JSON Web Token (JWT)
JWT according to RFC 7519 [16] Section 5.1.
alg REQUIRED | String | The Header Parameter used to indicate that the algorithm of the signature of the JWT is
HS256 | HMAC using SHA-256 according to RFC 7518 [15] Section 3.1.
sub REQUIRED | String | The client-defined Account ID that allows the RSSP to identify the account or user
initiating the authorization transaction.
iat REQUIRED | Number | The Unix Epoch time when the account_token was issued. The value is used to
determine the age of the JWT. The RSSP SHOULD define the lifetime of the JWT and
SHALL accept or reject an account_token based on its own expiration policy.
jti REQUIRED | String | A unique identifier for the JWT. This protects from replay attacks performed by reusing
the same account_token .
iss OPTIONAL | String | Contains the name of the issuer of the token (e.g. the commercial name of the
sighature application).
azp REQUIRED | String | Contains the unique “client ID” previously assigned to the sgnature application by the
remote service.

Implementation notes

Exa

e The RSSP SHALL securely share the OAuth 2.0 client_id and client_secret with the signature
application as part of the OAuth 2.0 configuration (see OAuth 2.0 Authorization).

e The JWT signature required to generate the account_token SHALL be calculated with the
HMAC function, using as shared secret the SHA256 hash of the OAuth 2.0 client_secret.

¢ The signature application SHOULD register in advance with the RSSP the list of Account ID
parameters associated with those users that are authorized to access a restricted
authorization server.

mple

>

account_token=eyJhbGci0iJIUzIINiIsInR5cCI6IkpXVCI9.eyJlzdWIiOiI3S11CckpBLWtCOTF5T1R1d1JZRz
h55GdzN3EtbzRINiIsImlhdCI6MTUzNzAxMjgwMCwianRpIjoiYjgzZmY4AOWEtZWQzZi0ONjgxLTgyOGQtNzE2MGI
SMTNjYTcyIiwiaXNzIjoiQ1NDIFNpZ25hdHVyZSBBcHBsaWNhdGlvbiIsImF6cCI6IME4ANZ1iNDESLThmZWQtNDcy
Z505Yzk3LTImODk3NTIXODU3ZSJ9.SEWD3KGDPFX-8IIJE7pC_R3J-0wdOVinEPTHMKKVQb6E&...

8.4.2 oauth2/authorize

Description




This is the OAuth 2.0 authorization endpoint. It SHALL process OAuth 2.0 authorization requests
using the Authorization Code flow as described in Section 1.3.1 of RFC 6749 [11].

This endpoint can be used in two modes. The application either sends all authorization request
parameters to this endpoint, which is the classical mode as defined in RFC 6749 [11]. Alternatively,
the application can first push the authorization request payload to the authorization server via the
“pushed authorization request endpoint” as defined in IETF Draft draft-ietf-oauth-par [28] and use
the request URI produced as parameter to the authorization endpoints. This section describes the
authorizaton request parameters for both modes. The pushed authorization endpoint and the use of
the pushed authorization request mode is described in oauth2/pushed_authorize.

The authorization server MAY support scopes “service” or “credential” for service and credential
authorization, respectively. The authorization server MAY also support use of “authorization_details”
as defined in IETF Draft draft-ietf-oauth-rar [27] in conjunction with the authorization detail type
“credential” for credential authorization. In case of “credential” authorization, a signing application
SHALL either use the scope value “credential” (in conjunction with the details of the transaction in
the URI parameters) or the authorization details type “credential” in a certain transaction (in which
case the transaction details are contained in the authorization details object).

Note 14: Be aware that oauth2/authorize is designed as an unauthenticated endpoint. A provider
offering this endpoint SHOULD protect the service from abuse and customer’s risk. This is
especially true when used for credential authorization. The authorization server MAY need to
(re-)authenticate the user through the user agent before establishing a different, potentially
cost-generating channel to the user (e.g. sending a push notification). A provider MAY apply
practices like session cookies or HTML5 session storage in order to retain a good user
experience, while addressing and mitigating related security issues. A provider MAY also
implement individual access authorization mechanisms on the oauth2/authorize endpoint. The
means for achieving this are beyond the scope of this specification.

Input

Note 15: Although RFC 3986 [3] doesn’t define length limits on URIs, there are practical limits
imposed by browsers and web servers. It is RECOMMENDED not to exceed an URI length of
2083 characters for maximum interoperability.

Input parameters defined in OAuth 2.0

Parameter Presence  Value Defined Description

response_type REQUIRED | String | RFC 6749 | see RFC 6749 [11], section 4.1.1. The value SHALL be “code”.

[11]
client_id REQUIRED | String | RFC 6749 | see RFC 6749 [11], section 4.1.1.
[11]
redirect_uri REQUIRED | String | RFC 6749 | The URL where the user will be redirected after the
Conditional [11] authorization process has completed. The authorization is

regired to exactly match the parameter value with the pre-
registered values. Only a valid URI pre-registered with the
remote service SHALL be passed.

If omitted, the remote service will use the default redirect URI
pre-registered by the signature application.




Parameter Presence  Value Defined Description
by

scope OPTIONAL | String | RFC 6749 | The scope of the access request as described by Section 3.3 of
[11] RFC 6749 [11]. This specification defines the following scopes:

e “service”: it SHALL be used to obtain an authorization
code suitable for service authorization.

e ‘“credential”: it SHALL be used to obtain an
authorization code suitable for credentials
authorization. The scope of the request might be
further detailed using request parameters as defined
below.

The parameter is OPTIONAL. If neither the “scope” nor the
“authorization_details” parameter is provided, the
authorization server SHALL use a default scope of “service”.
authorization_details OPTIONAL | String | IETF The details of the access request as described in IETF Draft-ietf-
Draft-ietf- | oauth-rar [27]. This specification defines the following
oauth-rar | authorization details type:
[27]

e “credential”: it SHALL be used to obtain an
authorization code suitable for credentials
authorization.

The parameter is OPTIONAL. If this parameter is used, all
values relevant for credential authorization SHALL be passed in
this object. The scope “credential” as well as any request
parameter relevant for credential authorization SHALL NOT be
used in this case.
code_challenge REQUIRED | String | RFC 7636 | Cryptographic nonce binding the transaction to a certain user
[25] agent, used to detect code replay and CSRF attacks. See IETF
RFC 7636 [25] and the IETF OAuth Security BCP [20], section
2.2, for details.
code_challenge_method | OPTIONAL | String | RFC 7636 | Code verifier transformation method as defined in IETF RFC
[25] 7636 [25], defaults to plain. The recommended value is S256.
state OPTIONAL | String | RFC 6749 |see RFC 6749 [11], section 4.1.1.
[11]
request_uri REQUIRED | String | IETF URI pointing to a pushed authorization request previously
Conditional Draft-ietf- | uploaded by the client.
oauth-par | This parameter SHALL only be used in conjunction with the
[28] client_id. All other parameters SHALL NOT be combined with
this parameter.

Input parameters defined in this specification

This specification defines the following additional parameters:

Parameter

lang

Presence

OPTIONAL

Value

String

Description

Request a preferred language according to RFC 5646 [9].

If specified, the authorization server SHOULD render the authorization web
page in this language, if supported. If omitted and an Accept-Language header
is passed, the authorization server SHOULD render the authorization web page
in the language declared by the header value, if supported.

The authorization server SHALL render the web page in its own preferred
language otherwise.

credentiallD

REQUIRED
Conditional

String

The identifier associated to the credential to authorize. It SHALL be used only if
the scope of the OAuth 2.0 authorization request is “credential”. Be aware that
this parameter value may contain characters that are reserved, unsafe or
forbidden in URLs and therefore SHALL be url-encoded by the signature
application.




Parameter

signatureQualifier

Presence

REQUIRED
Conditional

Value

String

Description

This parameter contains the symbolic identifier determining the kind of
signature to be created as defined in signatures/signDoc. It SHALL be used only
if the scope of the OAuth 2.0 authorization request is “credential” and if there
is no parameter “credentiallD” present.

numSignatures

REQUIRED
Conditional

Number

The number of signatures to authorize. Multi-signature transactions can be
obtained by using a combination of array of hash values and by calling multiple
times the signatures/signHash method, as defined in signatures/signHash. It
SHALL be used only if the scope of the OAuth 2.0 authorization request is
“credential”.

hashes

REQUIRED
Conditional

String

One or more base64url-encoded hash values to be signed. It allows the server
to bind the access token to the hash, thus preventing an authorization to be
used to sign a different content. It SHALL be used only if the scope of the
OAuth 2.0 authorization request is “credential”. It SHALL be used if the SCAL
parameter returned by credentials/info method, as defined in
credentials/info, for the current credentiallD is “2”, otherwise it is OPTIONAL.
Multiple hash values can be passed as comma separated values,

e.g. oauth2/authorize?hash=dnN3zX.. .ZmRm,ZjIxM3.. Z2ZK,..

The order of multiple values does not have to match the order of hashes
passed to signatures/signHash method, as defined in signatures/signHash.

hashAlgorithmOID

REQUIRED
Conditional

String

String containing the OID of the hash algorithm used to generate the hashes.

description

OPTIONAL

String

A free form description of the authorization transaction in the /ang language.
The maximum size of the string is 500 characters. It can be useful to provide
some hints about the occurring transaction.

account_token

OPTIONAL

String

An account_token as defined in Restricted access to authorization servers. It
MAY be required by a RSSP if their authorization server has a restricted access.
The value is a JSON Web Token (JWT) according to RFC 7519 [16].

clientData

OPTIONAL

String

Arbitrary data from the signature application. It can be used to handle a
transaction identifier or other application-spe cific data that may be useful for
debugging purposes. WARNING: this parameter MAY expose sensitive data to
the remote service. Therefore it SHOULD be used carefully.

Authorization details type “credential”

The authorization details type credential allows applications to pass the details of a certain
credential authorization in a single JSON object. It consists of the following field:

Field Presence  Value Description
type REQUIRED | String | authorization details type identifier. It must be set to credential.
credentiallD REQUIRED | String | see definition above (Input parameters).
Conditional
signatureQualifier | REQUIRED | String | see definition above (Input parameters).
Conditional
documentDigests | REQUIRED |JSON | An array composed of entries for every document to be signed. This applies for
array | both cases, where are document is signed or a digest is signed. Every entry is
composed of the following elements:
¢ “hash”: REQUIRED Conditional String containing the actual Base64-
encoded octet-representation of the hash of the document.
¢ “label”: String containing a human-readable description of the respective
document. The AS will use the label element in the user consent to
designate the document.
hashAlgorithmOID | REQUIRED | String | String containing the OID of the hash algorithm used to generate the hashes

listed in documentDigests.




Presence

Value Description

locations

OPTIONAL |JSON | Element as defined in IETF Draft-ietf-oauth-rar [27] designating the locations of
array |the API the access token issued in a certain OAuth transaction shall be used.
Might be used by deployments to identify the RSSP.

If the credential authorization values are provided via this authorization details, then they SHALL
NOT be provided within the other request parameters. The authorization details SHOULD be used,
since it allows a more detailes information on the documents to be signed.

Output

After a successful authorization, the authorization server SHALL redirect the user-agent by sending
the HTTP/1.1 302 Found response with a Location header containing the URI specified by the
redirect_uri parameter and adding the following values as query component using the
“application/x-www-form-urlencoded” format.

Attribute Presence  Value Description
code REQUIRED | String The authorization code generated by the authorization server.
It SHALL be bound to the client identifier and the redirection
URI. It SHALL expire shortly after it is issued to mitigate the risk
of leaks. The signature application cannot use the value more
than once.
state REQUIRED | String Contains the arbitrary data from the signature application that
Conditional was specified in the state attribute of the input request. It
SHALL be returned when specified in the request.
error REQUIRED | String A single error code string from the following list:
Conditional | invalid_request |
access_denied | ¢ “invalid_request”: it SHALL be used if the request is
unsupported_response_type missing a required parameter.
| invalid_scope | e “access_denied”: it SHALL be used if the server denied
server_error | the request.
temporarily_unavailable e “unsupported_response_ty pe”: it SHALL be used if the
server does not support the required response type.

e “invalid_scope”: it SHALL be used if the requested
scope is invalid, unknown, or malformed.

e “server_error”: it SHALL be used if the server
encountered an unexpected condition that prevented it
from fulfilling the request.

e “temporarily_unavailable” : it SHALL be used if the
server is currently unable to handle the request due to
temporary overload or maintenance .

It SHALL be returned only in case of an error.
error_descrip | OPTIONAL | String Human-readable text providing additional error information. It
tion MAY be returned only in case of an error.
error_uri OPTIONAL | String A URI identifying a human-readable web page with information

about the error. It MAY be returned only in case of an error.

Sample Request (Service authorization)

GET https://www.domain.org/oauth2/authorize?
response_type=code&
client_id=<OAuth2_client_id>&
redirect_uri=<OAuth2_redirect_uri>&
scope=service&
code_challenge=K2-1tc83acc4h@cOw6ESC_rEMTI3bww-uCHaoeK1t8U&
code_challenge _method=S256&




lang=en-US&
state=12345678

Sample Response (Service authorization)

HTTP/1.1 302 Found

Location: <OAuth2_redirect_uri>?
code=FhkXf9P269L8g&
state=12345678

Sample Request (Credential authorization)

GET https://www.domain.org/oauth2/authorize?
response_type=code&
client_id=<OAuth2_client_id>&
redirect_uri=<OAuth2_redirect_uri>&
scope=credential&
code_challenge=K2-1tc83acc4h@cOw6ESC_rEMTI3bww-uCHaoeK1t8U&
code_challenge _method=S256&
credentialID=GX0112348&
numSignatures=1&
hashes=MTIzNDU2Nzg5MHF3ZXJ@enVpb3Bhc2RmZ2hqa2zDtnl4&
hashAlgorithmOID=2.16.840.1.101.3.4.2.1&state=12345678

Sample Response (Credential authorization)

HTTP/1.1 302 Found
Location: <OAuth2_redirect_uri>?code=HS9naJlKWwp901hBcK348IUHiuH8374&

state=12345678

Sample Request (Credential authorization with signature qualifier)

GET https://www.domain.org/oauth2/authorize?
response_type=code&
client_id=<OAuth2_client_id>&
redirect_uri=<OAuth2_redirect_uri>&
scope=credential&
code_challenge=K2-1tc83acc4h@cOw6ESC_rEMTI3bww-uCHaoeK1t8U&
code_challenge _method=S256&
signatureQualifier=eu_eidas_qges&
numSignatures=1&
hashes=MTIzNDU2Nzg5MHF3ZXJ0enVpb3Bhc2RmZ2hqa2zDtnl4&
hashAlgorithmOID=2.16.840.1.101.3.4.2.1&state=12345678

Sample Response (Credential authorization with signature qualifier)

HTTP/1.1 302 Found
Location: <OAuth2 redirect_uri>?code=HS9naJlKWwp901hBcK348IUHiuH8374&

state=12345678
Sample Request (Credential authorization with signature qualifier via authorization_details)

GET https://www.domain.org/oauth2/authorize?
response_type=code&
client_id=<0Auth2_client_id>&
redirect_uri=<0Auth2_redirect_uri>&
code_challenge=K2-1tc83acc4h@cOw6ESC_rEMTI3bww-uCHaoeK1t8U&
code_challenge_method=S256&
&state=12345678



&authorization_details=%5B%7B%22type%22:%22credential%22,%22signatureQualifier%22:%22eu_e
idas_qges%22,%22documentDigests%22:%5B%7B%22hash%22:%22sTOgwOm+474gFj0qox1iSNspKgbcse4Ieiq
1Dg/HWuI=%22,%221abel%22:%22Example%20Contract%22%7D,%7B%22hash%22 :%22HZQzZmMAIWek{fGHO/ZK
WlnsdtOxg3H6bZYztgsMTLwO=%22,%221abel%22:%22Example%20Terms%200f%20Service%22%7D%5D,%22ha
shAlgorithmOID%22:%222.16.840.1.101.3.4.2.1%22%7D%5D

Decoded authorization_details parameter

[

{
"type":"credential”,
"signatureQualifier":"eu_eidas_qges",
"documentDigests": [
{
"hash":"sTOgwOm+474gFjoqox1iSNspKgbcse4IeiqlDg/HWuI=",
"label":"Example Contract”
¥
{
"hash" :"HZQzZmMAIWek{fGHO/ZKW1nsdtOxg3HEbZYztgsMTLwO=",
"label":"Example Terms of Service"
}
1,
"hashAlgorithmOID":"2.16.840.1.101.3.4.2.1"
}

]

Sample Response (Credential authorization with signature qualifier)

HTTP/1.1 302 Found
Location: <OAuth2_redirect_uri>?code=HS9naJlKWwp901hBcK348IUHiuH8374&
state=12345678

Error Response

HTTP/1.1 302 Found
Location: <OAuth2_redirect_uri>?error=invalid_request&
error_description=Invalid%20Authorization%20Code&state=12345678

8.4.3 oauth2/pushed_authorize

This is the OAuth 2.0 pushed authorization endpoint as defined in IETF Draft draft-ietf-oauth-par
[28]. It allows clients to push the payload of an OAuth 2.0 authorization request to the authorization
server via a direct request and provides them with a request URI that is used as reference to the data
in a subsequent call to the authorization endpoint (oauth2/authorize).

This mechanisms protects the contents of the authorization request from modification and
eavesdropping, allows for practically arbitrary request sizes, and enables the authorization server to
authenticate the signing application in advance of the authorization process.

The application sends the parameters as defined in oauth2/authorize (except the request_uri
parameter) to the pushed authorization endpoint using a HTTP POST request. The application is
required to authenticate towards the authorization server using the mechanism used in the context
of token requests (see oauth2/token). The authorization server will respond with a request URI that
the application sends to the authorization endpoint along with its client_id instead of the
authorization parameters.



Sample Pushed Authorization Request (Service authorization)

POST oauth2/pushed_authorize HTTP/1.1

Host: www.domain.org

Content-Type: application/x-www-form-urlencoded

Authorization: Basic czZCaGRSa3F@Mzo3RmpmcDBaQnIxS3REUmMJuzZlZkbUl3

response_type=code&

client_id=<0Auth2_client_id>&
redirect_uri=<0Auth2_redirect_uri>&

scope=service&
code_challenge=K2-1tc83acc4h@c9w6ESC_rEMTI3bww-uCHaoeK1t8U&
code_challenge_method=S256&

lang=en-US&

state=12345678

Sample Pushed Authorization Request (Credential authorization with authorization details)

POST oauth2/pushed_authorize HTTP/1.1

Host: www.domain.org

Content-Type: application/x-www-form-urlencoded

Authorization: Basic czZCaGRSa3F@Mzo3RmpmcDBaQnIxS3REUmJuzZlZkbUl3

response_type=code&

client_id=<0Auth2_client_id>&

redirect_uri=<0Auth2_redirect_uri>&
code_challenge=K2-1tc83acc4h@cOw6ESC_rEMTI3bww-uCHaoeK1t8U&

code_challenge_method=S256&

&state=12345678
&authorization_details=%5B%7B%22type%22:%22credential%22,%22signatureQualifier%22:%22eu_e
idas_qges%22,%22documentDigests%22:%5B%7B%22hash%22:%22sTOgwOm+474gFj0qox1iSNspKgbcsedIeiq
1Dg/HWuI=%22,%221abel%22:%22Example%20Contract%22%7D,%7B%22hash%22 :%22HZQzZmMAIWekfGHO/ZK
WlnsdtOxg3H6bZYztgsMTLwO=%22,%221abel%22:%22Example%20Terms%200f%20Service%22%7D%5D,%22ha
shAlgorithmOID%22:%222.16.840.1.101.3.4.2.1%22%7D%5D

Sample Pushed Authorization Response (Service authorization)

HTTP/1.1 201 Created
Cache-Control: no-cache, no-store
Content-Type: application/json

{
"request_uri": "urn:example:bwc4JK-ESCOw8accl9le-Y1LTC2",

"expires_in": 90

Sample authorization Request (with request_uri)

GET /authorize?client_id=<OAuth2_client_id>
&request_uri=urn%3Aexample’%3Abwc4IJK-ESCOW8acc191e-Y1LTC2 HTTP/1.1
Host: as.example.com

8.4.4 oauth2/token
Description

This is the OAuth token endpoint. It is used to obtain an OAuth 2.0 bearer access token from the
authorization server by passing either the client credentials pre-assigned by the authorization server
to the signature application, or the authorization code or refresh token returned by the



authorization server after a successful user authentication, along with the client ID and client secret
in possession of the signature application. This method SHALL be used only in case of an
Authorization Code flow as described in Section 1.3.1 of RFC 6749 [11], in case of Client Credential
flow as described in Section 1.3.4 of RFC 6749 [11] or in case of Refresh Token flow as described in
Section 1.5 of RFC 6749 [11]. Notice that the Client Credential flow and Refresh Token flow can be
used only for service authorization.

For confidential clients, implementations MAY utilize any of the client authentication methods
defined in the IANA “OAuth Token Endpoint Authentication Methods” registry established by IETF
RFC 7591 [24].

This is a non-exhaustive list of options:

e Passing a pre-issued client secret as a parameter in the request body as described in Section
2.3.1 of RFC 6749 [11].

e Applying a pre-issued client secret within the HTTP Basic authentication scheme as described
in Section 2.3.1 of RFC 6749 [11].

e Passing a client assertion as defined in section 4.2 of RFC 7521 [14].
e Using TLS Client authentication as defined in RFC 8705.

Note 16: oauth2/token does not specify a regular CSC API method, but rather the URI of the OAuth
2.0 Token endpoint. Depending on the discovery method, this URL is either determined by
adding oauth2/token to the authorization server’s base URI or from the authorization server’s
configuration.

Input

In order to maintain full compatibility with the OAuth 2.0 standard, the following parameters SHALL
be passed in the HTTP request entity-body using the “application/x-www-form-urlencoded” format
with a character encoding of UTF-8.

Note 17: The list of parameters is split between standard parameters that are defined by the OAuth
2.0 framework (see RFC 6749 [11] and RFC 7521 [14]) and parameters that are defined in this
specification. These parameters SHALL be combined in a single query string.

Input parameters defined in OAuth 2.0

Parameter Presence Value Description

grant_type REQUIRED | String The grant type, which depends on the type of OAuth 2.0 flow:
authorization_code
| client_credentials e “authorization_code”: SHALL be used in case of
| efiresly felan Authorization Code Grant.

e ‘“client_credentials”: SHALL be used in case of Client
Credentials Grant.
o “refresh_token”: SHALL be used in case of Refresh Token

flow.
code REQUIRED | String The authorization code returned by the authorization server. It
Conditional SHALL be bound to the client identifier and the redirection URI.

This SHALL be used only when grant_type is
“authorization_code”.




Parameter Presence Description

refresh_token REQUIRED | String The long-lived refresh token returned from the previous session.
Conditional This SHALL be used only when the scope of the OAuth 2.0
authorization request is “service” and grant_type is
“refresh_token” to reauthenticate the user according to the
method described in Section 1.5 of RFC 6749 [11].

client_id REQUIRED | String The client_id as defined in the Input parameter table in
oauth2/authorize.
client_secret REQUIRED | String This is the “client secret” previously assigned to the signature
Conditional application by the remote service. It SHALL be passed if the

client is setup to authenticate with a client secret and does not
use an authorization header. Note: According to RFC 6749 [11]
section 2.3.1., including the client credentials in the request-
body is NOT RECOMMENDED and SHOULD be limited to clients
unable to directly utilize the HTTP Basic authentication scheme.

client_assertion REQUIRED | String The assertion being used to authenticate the client. Specific
Conditional serialization of the assertion is defined by profile documents.
It SHALL be passed if the client is setup for authentication with
client assertions.

client_assertion_type | REQUIRED | String The format of the assertion as defined by the authorization
Conditional server. The value will be an absolute URI.
It SHALL be passed if a client assertion is used.

redirect_uri REQUIRED | String The URL where the user was redirected after the authorization
Conditional process completed. It is used to validate that it matches the
original value previously passed to the authorization server. This
SHALL be used only if the redirect_uri parameter was included in
the authorization request, and their values SHALL be identical.

authorization_details | REQUIRED | String MUST be present if the authorization_details parameter was
Conditional used in the authorization request. It contains the authorization
details as approved during the authorization process. In case a
signature qualifier was used in the request and resolved for a
credential ID in the course of the authorization process, this
object will contain the credential ID.

Input parameters defined in this specification

Parameter Presence Value Description

clientData | OPTIONAL | String | The clientData as defined in the Input parameter table in ocauth2/authorize.

Output

This method returns the following values using the “application/json” format:

Output parameters defined in OAuth 2.0

Attribute Presence Value Description

access_token | REQUIRED | String | The short-lived access token to be used depending on the scope of the OAuth 2.0
authorization request.

This access token as the value of the “Authorization: Bearer” in the HTTP header of
the subsequent API requests within the same session.

A signing application MAY also pass an access tokens with scope “credential” as the
value of the sAD parameter when invoking the signatures/signHash or
signatures/signDoc methods, as defined in signatures/signHash.




Attribute Presence Value Description

refresh_token | OPTIONAL | String | The long-lived refresh token used to re-authenticate the user on the subsequent
session based on the method described in Section 1.5 of RFC 6749 [11].

The presence of this parameter is controlled by the user and is allowed only when
the scope of the OAuth 2.0 authorization request is “service”.

In case grant_type is “refresh_token” the authorization server MAY issue a new
refresh token, in which case the client SHALL discard the old refresh token and
replace it with the new refresh token.

token_type REQUIRED | String | Access token type as defined in RFC 6749 [11]. Default is “Bearer”, other token types
are defined in the “OAuth Access Token Types” established by RFC 6749 [11].

expires_in OPTIONAL | Number | The lifetime in seconds of the service access token. If omitted, the default expiration
time is 3600 sec. (1 hour).

Note 18: The lifetime of the refresh token is determined by the RSSP.

Output parameters defined in this specification

Attribute Presence Value Description

credentiallD | OPTIONAL | String | The identifier associated to the credential authorized in the corresponding authorization
request. This response parameter MAY be present in case the scope credential is used
in the authorization request along with the parameter “signatureQualifier” and the
authorization server determined a credentiallD in the authorization process to be used
in subsequent signature operations.

Error Case Status Code Error Error Description

Missing “client_id” parameter 400 invalid_request | Missing parameter client_id
(bad request)

Missing “grant_type” parameter 400 invalid_request | Missing parameter grant_type
(bad request)

Invalid parameter “grant_type” 400 invalid_request | Invalid parameter grant_type
(bad request)

Missing “code” parameter 400 invalid_request | Missing parameter code
(bad request)

Missing “refresh_token” parameter 400 invalid_request | Missing parameter refresh_token
(bad request)

Invalid “client_id” parameter 400 invalid_request | Invalid parameter client_id
(bad request)

Invalid “code” parameter 400 invalid_grant | Invalid parameter code
(bad request)

The “redirect_uri” parameter does not match | 400 invalid_grant redirect_uri parameter does not
the redirection URI in the authorization (bad request) match redirect_uri parameter of
request authorization request

Invalid “refresh_token” parameter 400 invalid_grant Invalid parameter refresh_token

(bad request)

Refresh token expired 400 invalid_grant Refresh token expired
(bad request)
Authorization code invalid or expired 400 invalid_grant | Authorization code is invalid or
(bad request) expired
Missing “client_secret” parameter and no 400 (bad request) |invalid_request | Client authorization required
authorization header provided | 401

(unauthorized)




Error Case Status Code Error Description

Invalid “client_secret” parameter 400 invalid_request | Invalid parameter client_secret
(bad request)

Sample Request (Authorization code flow)

POST oauth2/token HTTP/1.1
Host: www.domain.org
Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&
code=FhkXf9P269L8g&
client_id=<0Auth2_client_id>&
client_secret=<0Auth2_client_secret>&
redirect_uri=<0Auth2_redirect_uri>

cURL example

curl -i -X POST

-H "Content-Type: application/x-www-form-urlencoded"

-d 'grant_type=authorization_code&
code=FhkXf9P269L8g&
client_id=<0Auth2_client_id>&
client_secret=<O0Auth2_client_secret>&
redirect_uri=<OAuth2_redirect_uri>'

https://www.domain.org/oauth2/token

Sample Response (for service scope)

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

{
"access_token": "4/CKN69L8gdSYp5_pwH3X1FQZ3ndFhkXf9P2_TiHRG-bA",
"refresh_token": "_TiHRG-bAH3X1FQZ3ndFhkXf9P24/CKN69L8gdSYp5_pw",
"token_type": "Bearer",
"expires_in": 3600

}

Sample Response (for credential scope)

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

{
"access_token":
"3X1FQZ3ndFhkXf9P24/CKN69L8gdSYp5H3X1FQZ3ndFhkXf9pP2",
"token_type": "Bearer",
"expires_in": 300

}

Sample Response (for credential scope with signature qualifier and AS selected credential)

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

{
"access_token":
"3X1FQZ3ndFhkXf9P24/CKN69L8gdSYp5H3X1FQZ3ndFhkXf9opP2",
"token_type": "Bearer",
"expires_in": 300,




"credentialID": "GX©112348"
Sample Response (for credential authorization details with signature qualifier and AS selected
credential)

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8

{
"access_token":"3X1FQZ3ndFhkXf9P24/CKN69L8gdSYp5H3X1FQZ3ndFhkXf9pP2",
"token_type":"Bearer",

"expires_in":300,
"authorization_details":[
{
"type":"credential”,
"credentialID":"GX0112348",
"documentDigests": [
{
"hash":"sTOgwOm+474gFj0qox1iSNspKgbcse4IeiqlDg/HWuI=",
"label":"Example Contract"
¥
{
"hash":"HZQzZmMAIWekfGHO/ZKW1lnsdtOxg3H6bZYztgsMTLwO=",
"label":"Example Terms of Service"
}
1,
"hashAlgorithmOID":"2.16.840.1.101.3.4.2.1"
}
]
}

Sample Request (Refresh token flow)

POST oauth2/token HTTP/1.1
Host: www.domain.org
Content-Type: application/x-www-form-urlencoded

grant_type=refresh_token&
refreshToken=_TiHRG-bA+H3X1FQZ3ndFhkXf9P24%2FCKN69L8gdSYp5_pw&
client_id=<OAuth2_client_id>&
client_secret=<OAuth2_client_secret>&
redirect_uri=<OAuth2_redirect_uri>

cURL example

curl -i -X POST

-H "Content-Type: application/x-www-form-urlencoded"

-d 'grant_type=refresh_token&
refreshToken=_TiHRG-bA+H3X1FQZ3ndFhkXf9P24%2FCKN69L8gdSYp5_pw&
client_id=<OAuth2_client_id>&
client_secret=<0Auth2_client_secret>&
redirect_uri=<OAuth2_redirect_uri>'

https://www.domain.org/oauth2/token

Sample Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8

{
"access_token": "K7x-OLj7Wwdt4pwH3X1FQZ3ndFhkXf9P2_TiHRQaxZ9kJ@",
"token_type": "Bearer",



"expires_in": 3600

}

8.4.5 oauth2/revoke
Description

Revoke an access token or refresh token that was obtained from the authorization server, as
described in RFC 7009 [13]. This method may be used to enforce the security of the remote service.
When the signature application needs to terminate a session, it is RECOMMENDED to invoke this
method to prevent further access by reusing the token.

This method allows the signature application to invalidate its tokens according to the following
approach:

e |f the token passed to the request is a refresh_token, then the authorization server SHALL
invalidate the refresh token and it SHOULD also invalidate all access tokens based on the same
authorization grant.

e |f the token passed to the request is an access_token, then the authorization server SHALL
invalidate the access token and it SHALL NOT revoke any existing refresh token based on the
same authorization grant.

The invalidation of the token takes place immediately, and the token cannot be used again after its
revocation. As a token issued in the process of credential authorization is automatically invalidated
as soon as its usage limit is reached, a client does not have to revoke the corresponding token after
use. However, a provider SHOULD support the revocation of such a token before reaching the usage
limit.

A confidential client SHALL authenticate with the authorization server using its client authentication
method.

Note 19: oauth2/revoke does not specify a regular CSC API method, but rather the URI of the OAuth
2.0 Token endpoint. Depending on the discovery method, this URL is either determined by
adding oauth/revoke to the authorization server’s base URI or from the authorization server’s
configuration.

8.4.5.1 Input

In order to maintain full compatibility with the OAuth 2.0 standard, the following parameters SHALL
be passed in the HTTP request entity-body with the authorization endpoint URI using the
“application/x-www-form-urlencoded” format with a character encoding of UTF-8.

Note 20: The list of parameters is split between standard parameters that are defined by the OAuth
2.0 framework (see RFC 6749 [11] and RFC 7521 [14]) and parameters that are defined in this
specification. These parameters SHALL be combined in a single query string.

Input parameters defined in OAuth 2.0

Parameter Presence Value Description

token REQUIRED | String The token that the signature application wants to get revoked.




Parameter Presence Value

token_type_hint OPTIONAL | String

access_token

refresh_token

Description

Specifies an optional hint about the type of the token submitted for
revocation. If the parameter is omitted, the authorization server
SHOULD try to identify the token across all the available tokens.

client_id REQUIRED | String The client_id as defined in the Input parameter table in
Conditional oauth2/authorize. It SHALL be passed if no authorization header is
used.
client_secret REQUIRED | String The client_secret as defined in the Input parameter table in
Conditional oauth2/token.
client_assertion REQUIRED | String The client_assertion as defined in the Input parameter table in
Conditional oauth2/token.

client_assertion_type | REQUIRED | String
Conditional

The client_assertion_type as defined in the Input parameter table in

oauth2/token.

Input parameters defined in this specification

Parameter Presence Value Description

clientData | OPTIONAL | String | The clientData as defined in the Input parameter table in cauth2/authorize.

Output

This method has no output values and the response returns “No Content” status.

Error Case

Missing “token” parameter

Status Code Error Error Description

400 invalid_request Missing parameter token

(bad request)

“token_hint” parameter
present, not equal to
“access_token” nor
“refresh_token”

400 invalid_request Invalid parameter token_type_hint

(bad request)

Invalid access_token or
refresh_token

400 invalid_request Invalid string parameter token

(bad request)

Unsupported token type

400 unsupported_token_type | The authorization server does not support the

(bad request)

revocation of the presented token type. That
is, the client tried to revoke an access token on
a server not supporting this feature.

Missing “client_id” parameter
and no authorization header
provided

400 (bad invalid_request Missing parameter client_id

request) | 401
(unauthorized)

Invalid “client_id” parameter

400 invalid_request Invalid parameter client_id

(bad request)

Missing “client_secret”
parameter and no
authorization header
provided

400 (bad invalid_request Client authorization required

request) | 401
(unauthorized)

Invalid “client_secret”
parameter

400 invalid_request Invalid parameter client_secret

(bad request)

Invalid Authorization header

401 invalid_client Invalid authorization header

(unauthorized)

Sample Request




POST /oauth2/revoke HTTP/1.1
Host: www.domain.org
Content-Type: application/x-www-form-urlencoded

token=_TiHRG-bA-H3X1FQZ3ndFhkXf9P24/CKN69L8gdSYp5_ pw&
token_type_hint=refresh_token&
client_id=<OAuth2_client_id>&
client_secret=<OAuth2_client_secret>&
clientData=12345678

cURL example

curl -i -X POST

-H "Content-Type: application/x-www-form-urlencoded"

-d 'token=_TiHRG-bA-H3X1FQZ3ndFhkXf9P24/CKN69L8gdSYp5_ pw&
token_type_hint=refresh_token&
client_id=<OAuth2_client_id>&
client_secret=<0Auth2_client_secret>&
clientData=12345678"

https://www.domain.org/oauth2/revoke

Sample Response

HTTP/1.1 204 No Content

8.5 Authentication and authorization for electronic seals

8.5.1 Introduction

The eIDAS regulation (Regulation (EU) No 910/2014 [i.1]) defines two basic concepts: an electronic
signature, created by a natural person used to sign the content of a document, and an electronic seal
based on a certificate of a legal person used to prove the origin and integrity of the document. From
a mere technical point of view, both electronic signatures and electronic seals are digital signatures.
However, the usage of the CSC APl in order to create an electronic signature or an electronic seal can
be different depending on the above-cited legal context. The present section discusses the usage of
the CSC API for creating electronic seals, which in the context of the present document are digital
signatures created by using a certificate issued to a legal person. This ensures the integrity and origin
of the document, without necessarily committing to the content. ::: { NOTE} This definition is not
limited to the legal definition of electronic seals in Regulation (EU) No 910/2014 [i.1]. ::: In many
cases, electronic seals are created in automated processes and often a large number of documents
are to be sealed in one session. In the present document, there are two different possible
authorizations. The first one is the authorization to get access to the API, and the second one is the
authorization to use the signing credential for the seal/signature creation. The following section
describe how these authorizations can be done with the purpose of creating an electronic seal.

8.5.2 Service authorization and authentication for electronic seals

Several methods allow access to the CSC API without the need for regular human interaction, which
would not be very practical in the case of sealing a large number of documents.

8.5.2.1 Login / password



HTTP basic or HTTP digest authentication can be used to provide access to the API. The login and
password MAY be linked to the signature application or to the certificate owner.

8.5.2.2 OAuth with client credentials grant

The usage of OAuth 2.0 with client credential grant allows granting access to the signing application.
It does convey any user specific identifier. This authenticates the client, any user specific information
is indicated within the respective CSC API call or provided implicitly or separately.

8.5.2.3 Mutual TLS

The signing server can be configured to use TLS connections, requiring clients that attempt to
connect to get authenticated. A client SHALL use a client certificate in order to authenticate. The
client certificate SHALL contain information allowing the signing server to authenticate the client
application/user. The signing server MAY be configured to accept TLS connections only from a limited
group of allowed clients.

An example can just be a scenario where the usage of the sealing credentials is limited
only to successfully authenticated TLS connections using client certificates
authentication connections. This method does not create any token. In an additional use
case, the remote signing service provider has a specific end point (outside of CSC
specification) which can be accessed via TLS authentication + API key + secret which
creates an Access Token. And this access token is used later on to access the API. In case
of seals, no extra authorization is used to access the private key. Used with short lived
credentials. ::: {_ NOTE} By defining an empty set of authentication object types, the RSSP
can decide to not need any more actions. :::

In addition to the mutual TLS, a token can be created based on login / password + OTP
by a non CSC end point, and is then used for signing together with a PIN. This can be
used with long-term certificates

8.5.3 Credential authorization for electronic seals

The credential authorization allows the usage of a specific key. There are three possible strategies, to
avoid human interaction for each signature.

e The first is the usage of an authorization means that can be fully automized, for example the
usage of a PIN.

e ltis also possible to not require any additional actions, if the access token is already sufficient.

¢ The third one, consists in creating a SAD for a high but limited number of signatures. Since the
creation of the SAD is an operation which is not repeated very often, it can be created in a
non-fully automated process. This allows a more complex authorization, and to be more
precise in what this authorization includes.

9 Creating a remote signature

Remote signature services allow generating digital signatures remotely by means of an RSCD
operated as a service. An RSSP is an organization that manages the RSCD on behalf of the signers.



In general, each time a remote signhature is required, a strong authentication mechanism SHOULD be
invoked. Strong authentication requiring the user to authorize to the signature application multiple
times in a rapid sequence using authorization mechanisms like OTP can be cumbersome. In order to
improve the signer’s experience, the strong authentication MAY be allowed to occur only once per
signing session (for example with a single OTP) covering multiple signatures.

The current specification supports the following three use cases:
1. The remote signature of a single hash;
2. The remote signature of multiple hashes passed in a single signature operation;

3. The remote signature of multiple hashes passed across multiple signature operations
occurring within a single signing session.

A RSSP SHALL support at least case 1, with credentials authorization occurring every time a signature
is created.

The RSSP decides whether to support multi-signature transactions (use cases 2 and 3) or not. In
some cases, regulatory or security requirements may forbit multi-signature transactions. The
multisign output value of the credentials/info method, as defined in credentials/info, provides
information if multi-signature transactions are supported by a specific credential or not.

A multi-signature transaction can be created by invoking the signatures/signHash method, as
defined in signatures/signHash, and submitting multiple hash values in one run (use case 2, suitable
for “batch signing” of multiple documents) or by invoking signatures/signHash multiple times (use
case 3, suitable for creating multiple signatures from a single user in a PDF document). In both cases,
the authorization mechanism adopted by the signature application SHALL explicitly specify the total
number of signatures to be authorized and the remote signing service SHALL prevent signature
applications from creating more signatures than authorized.

See Interaction among elements and components to understand the workflows supported in this
specification and the sequence of API calls to be invoked to create the supported types of remote
signatures.

10 Error handling

Errors are returned by the remote service using standard HTTP status code syntax. Additional
information is included in the body of the response from an API request using JSON.

The HTTP protocol defines a list of standard status codes that are referenced in this specification to
help the signature application deal with these responses accordingly. For the events described in
Table 2, the remote service SHALL support the corresponding HTTP status codes.

Table 2 — Supported HTTP Status Codes
Standard Status Description

Code

200 OK Response to a successful APl method request.

204 No Content Response to a successful API method request in case no content is returned.
302 Found Response used to redirect the user to an OAuth 2.0 authorization endpoint.
400 Bad Request Returned due to unsupported, invalid or missing required parameters.




401 Unauthorized | Returned when a bad or expired authorization token is used.

429 Too Many Returned when a request is rejected due to rate limiting.
Requests

500 Internal Server | Returned when the server encounters an unexpected condition.

Error

501 Not Returned when an unimplemented method is requested.

Implemented

503 Service Returned when the server is currently unable to handle the request due to temporary overloading or
Unavailable maintenance conditions.

Status codes 429 and 50x are applicable to the remote service overall and are not specific to any API
methods. For this reason, they are not mentioned in the error tables for each method specifically.

10.1 Error messages

Just as an HTML error page shows a useful error message to a visitor, the remote service
implementing the APl described in this specification SHALL provide a useful error message in case
something goes wrong. When an error is detected, the remote service SHALL return the
corresponding HTTP status code and SHALL return the information on the error in the body of the
HTTP response using the “application/json” media type, as defined by RFC 4627 [5]. The parameters
are serialized into a JSON structure by adding each parameter at the highest structure level.
Parameter names and string values are included as JSON strings as shown in the following example:

HTTP/1.1 400 Bad Request
Date: Mon, 03 Dec 2018 12:00:00 GMT
Content-Type: application/json;charset=utf-8
Content-Length:
{
"error": "invalid_request",
"error_description”: "The access token is not valid"

The error_description parameter is OPTIONAL but highly RECOMMENDED to provide a human-
readable text string containing additional information to assist the user in understanding the error
that occurred.

The remote service can also define custom error messages by using messages that are not defined in
this specification.

The following table contains definitions for errors that are common to more than one API methods.
Therefore, they’re presented only once in this section instead of being repeated for all APl methods.

Table 3 — Predefined common Error Messages

Error Error Description

invalid_request The request is missing a required parameter, includes an invalid parameter value, includes a
parameter more than once, or is otherwise malformed.

unauthorized_client The client is not authorized to use this method.

access_denied The user, authorization server or remote service denied the request.

unsupported_response_type | The authorization server does not support obtaining an authorization code using this
method.




Error Error Description

invalid_scope The requested scope is invalid, unknown, or malformed.

server_error The authorization server encountered an unexpected condition that prevented it from
fulfilling the request.

temporarily_unavailable The authorization server is currently unable to handle the request due to a temporary
overloading or maintenance of the server.

expired_token The access or refresh token is expired or has been revoked.

invalid_token The token provided is not a valid OAuth access or refresh token.

11 The remote service APIs

In order to simplify the navigation of this specification, the following table summarizes all the API
methods defined in the present specification. The info method, as defined in info, SHALL be
implemented. All other methods are OPTIONAL.

Table 4 — APl methods summary

API Method Description

info Returns information on the remote service and the list of API methods it has
implemented.

auth/login Authorize the remote service with HTTP Basic or Digest authentication.

auth/revoke Revoke the service access token or refresh token.

credentials/list Returns the list of credentials associated to a user.

credentials/info Returns information on a signing credential, its associated certificate and a description of

the supported authorization mechanism.

credentials/authorize Authorize the access to the credential for signing.

credentials/extendTransaction | Extend the validity of a multi-signature transaction.

credentials/sendOTP Start the online OTP mechanism associated to a credential.
signatures/signHash Calculate a raw digital signature from one or more hash values.
signatures/signDoc Creates one or more AdES signatures for documents or document digests.
signatures/timestamp Return a time stamp token for the input hash value.

oauth2/authorize* Initiate an OAuth 2.0 authorization flow.

oauth2/token* Obtain an OAuth 2.0 access token or refresh token.

oauth2/revoke* Revoke an OAuth 2.0 access token or refresh token.

Note 21: Although oauth2/authorize , oauth2/token, oauth2/pushed_authorize, and
oauth2/revoke, as defined in OAuth 2.0 Authorization, do not specify regular CSC APl methods
but rather endpoints managed by the OAuth2 authorization server, they’re listed in Table 4 to
provide a complete overview of the endpoints that can be supported by a remote service
conforming to this specification.

11.1 info

Description



Returns information about the remote service and the list of the APl methods it supports. This
method SHALL be implemented by any remote service conforming to this specification.

Input

This method allows the following parameters:

Parameter Presence Value Description

lang OPTIONAL | String | Request a preferred language of the response to the remote service, specified according
to RFC 5646 [9].
If present, the remote service SHALL provide language-specif ic responses using the
specified language. If the specified language is not supported then it SHALL provide these
responses in the language as specified in the lang output parameter.

11.1.0.1 Output:

This method returns the following values using the “application/json” format:

Attribute Presence  Value  Description

specs REQUIRED | String | The version of this specification implemented by the provider. The
format of the string is Major.Minor.x.y , where Major is a number
equivalent to the API version (e.g. 2 for API v2) and Minoris a
number identifying the version update, while x and y are subversion
numbers.

The value corresponding to this specification is “2.0.0.0”.

name REQUIRED |String | The commercial name of the remote service. The maximum size of
the string is 255 characters.

logo REQUIRED |String | The URI of the image file containing the logo of the remote service
which SHALL be published online. The image SHALL be in either
JPEG or PNG format and not larger than 256x256 pixels.

region REQUIRED |String | The ISO 3166-1 [22] Alpha-2 code of the Country where the remote
service provider is established (e.g. ES for Spain).

lang REQUIRED |String | The language used in the responses, specified according to RFC
5646 [9].

description REQUIRED |String | A free form description of the remote service in the lang language.

The maximum size of the string is 255 characters.

authType REQUIRED | Array of | One or more values corresponding to the service authorization
String | mechanisms supported by the remote service to authorize the
access to the API:

e “external”: in case the authorization is managed externally
(e.g. using a VPN or a private LAN).

e “TLS”:in case the authorization is provided by means of TLS
client certificate authentication.

* “basic”: in case of HTTP Basic Authentication.

o “digest”: in case of HTTP Digest Authentication.

e “oauth2code”: in case of OAuth 2.0 with authorization code
flow.

e “oauth2client”: in case of OAuth 2.0 with client credentials
flow.




Attribute

oauth2

Presence

REQUIRED
Conditional

Value

String

Description

The base URI of the OAuth 2.0 authorization server endpoint
supported by the remote service for service authorization and/or
credential authorization. The parameter SHALL be present if

o the authType parameter contains “oauth2code” or
“oauth2client” or

¢ the remote service supports the value “oauth2code” for the
auth/mode parameter returned by credentials/info (as

specified in credentials/info)

and the parameter “oauth2lIssuer” is not present.

This URI SHALL be combined with the path components described
in OAuth 2.0 Authorization in order to build the actual endpoint
URLs.

oauth2issuer

REQUIRED
Conditional

String

The issuer URL of the OAuth 2.0 authorization server as defined in
IETF RFC 8414 [23] supported by the remote service for service
authorization and/or credential authorization. The parameter
SHALL be present if

¢ the authType parameter contains “oauth2code” or
“oauth2client” or

¢ the remote service supports the value “oauth2code” for the
auth/mode parameter returned by credentials/info (as

specified in credentials/info)

and the parameter “oauth2” is not present.

The OAuth endpoint URLs are obtained from the OAuth Server
metadata as described in IETF RFC 8414 [23].

asynchronousOperationMode

OPTIONAL

Boolean

This parameter shall be “true” if the remote signing server supports
also asynchronous signature mechanism. The default value is
“false”. An omitted parameter or the value “false” indicates that the
remote signing server manages signature requests only in
synchronous operation mode.

methods

REQUIRED

Array of
String

The list of names of all the API methods described in this
specification that are implemented and supported by the remote
service.

validationinfo

OPTIONAL

Boolean

This parameter SHALL be “true” if the remote signing server
supports the “validationInfo” response parameter of the method
signatures/signDoc in not mandatory cases. An omitted parameter
or the value “false” indicates that the remote signing server does
not support “validationIinfo” in those cases.

signAlgorithms

REQUIRED

JSON
Object

Object including one or more signature algorithms supported by
the RSSP.

signature_formats

REQUIRED

JSON
Object

Object including one or more signature formats supported by the
RSSP.

conformance_levels

REQUIRED

Array of
String

The list of names of all signature conformance levels supported by
the RSSP as defined in the Input parameter table in
signatures/signDoc.

The signAlgorithms is a JSON Object composed by the following parameters:

® algos
® algoParams

specified according to the following table.




Parameter Presence  Value Description

algos REQUIRED | Array | The list of signature algorithms supported by the RSSP as defined in the Input
of parameter table in signatures/signHash. The supported signature algorithms SHOULD
String | follow the recommendations of ETSI TS 119 312 [21] and SHALL be expressed as defined

in Expressing algorithms clause.
algoParams | REQUIRED | Array | The list of eventual signature parameters as defined in the Input parameter table in
Conditional | of signatures/signHash.

String

The signature_formats is a JSON Object composed by the following parameters:

® formats

®* envelope_properties

specified according to the following table.

Parameter Presence  Value Description

formats REQUIRED | Array | The list of signature formats supported by the RSSP as defined in the Input
of parameter table in signatures/signDoc.
String

envelope_properties | REQUIRED | Array | The list of the properties concerning the signed envelope, whose possible

Conditional | of values depend on the value of the formats parameter entries, as defined in the

Array | Input parameter table in signatures/signDoc. The number of arrays included in
of the envelope_properties array SHALL equal the number of entries in the

String | formats array. The values included in the array at position i of the
envelope_properties array SHALL refer to the signature format value included
at position i of the formats array. An empty array at the position i of the
envelope_properties array indicates that the RSSP supports the default signed
envelope property for the signature format specified at the position i of the
formats array, as defined in the Input parameter table in signatures/signDoc.

Note 22: info is a mandatory API method, so it MAY be excluded from the list of APl method names
returned by the methods parameter.
The endpoints oauth2/authorize , oauth2/token, oauth2/pushed_authorize and
oauth2/revoke, as defined in OAuth 2.0 Authorization, do not specify regular API methods but
rather endpoints managed by the OAuth2 authorization server, therefore they MAY be excluded
from the list of API method names returned by the methods parameter.

Sample Request

POST /csc/v2/info HTTP/1.1
Host: service.domain.org
Content-Type: application/json

{}

cURL example

curl -i -X POST
-H "Content-Type: application/json"
_d l{}l

https://service.domain.org/csc/v2/info

Sample Response




HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8

{

"specs": "2.0.0.0",

"name": "ACME Trust Services",

"logo": "https://service.domain.org/images/logo.png",

"region": "IT",

"lang": "en-US",

"description": "An efficient remote signature service",

"authType": ["basic", "oauth2code"],

"oauth2": "https://www.domain.org/",

"methods": ["auth/login", "auth/revoke", "credentials/list",
"credentials/info", "credentials/authorize",
"credentials/sendOTP",

"signatures/signHash"],

"signAlgorithms":

{

"algos": ["1.2.840.10045.4.3.2", "1.2.840.113549.1.1.1", "1.2.840.113549.1.1.10"]
¥

"signature_formats":

"formats": ["C", "X", "P"],
"envelope_properties": [["Detached", "Attached", "Parallel"],
["Enveloped", "Enveloping", "Detached"],
["Certification", "Revision"]]
¥
"conformance_levels": ["Ades-B-B", "Ades-B-T"]
}

11.2 auth/login
Description

Obtain an access token for service authorization from the remote service using HTTP Basic
Authentication or HTTP Digest authentication, as defined in RFC 7235 [2], using the userID and
password assigned to the user. These authentication factors SHALL be passed directly in the HTTP
header as an authorization grant to obtain a service access token to use for the subsequent API
requests within the same session.

The OPTIONAL rememberMe parameter can be used, under the control of the user, in order to
extend a successful authentication for subsequent sessions and to avoid the user to authenticate
again within a predefined period of time. In this case, a refresh token will be obtained, which can be
used in the refresh_token parameter in subsequent calls as an alternative to passing user/D and
password again for obtaining a new access token.

Note 23: The RECOMMENDED mechanism for service authorization is OAuth 2.0 (see OAuth 2.0
Authorization). HTTP Basic Authentication is an unsafe mechanism and therefore it SHOULD
NOT be used, especially by signature application running as a service. It should only be used
when there is a high degree of trust between the user and the signature application and when
other authorization types like OAuth 2.0 are not available. This method may also be deprecated
in future releases of this specification.

Input



The userID and password strings SHALL be encoded as defined in RFC 7235 [2] and provided in the
HTTP Authorization header. If available, a refresh token MAY be alternatively used to re-authenticate
the user after an access token has expired. This method allows the following parameters:

Parameter Presence  Value Description

refresh_token | REQUIRED | String | The long-lived refresh token returned from a previous call to this method with HTTP
Conditional Basic Authentication. This MAY be used as an alternative to the Authorization
header to reauthenticate the user according to the method described in RFC 6749
[11] par. 1.5. In such case the encoded userld and password SHALL not be provided
in the HTTP Authorization header.

NOTE: This refresh token MAY not be compatible with refresh tokens obtained by
means of OAuth 2.0 authorization (see oauth2/token in oauth2/token).

rememberMe | OPTIONAL | Boolean | A boolean value typically corresponding to an option that the user may activate
during the authentication phase to “stay signed in” and maintain a valid
authentication across multiple sessions:

e “true”: if the remote service supports user reauthentication, a
refresh_token will be returned and the signature application may use it on a
subsequent call to this method instead of passing an Authorization header.

o “false”: a refresh_token will not be returned.

If the parameter is omitted, it will default to “false”.
This mechanism is based on the method described in RFC 6749 [11] section 1.5.

clientData OPTIONAL |String | The clientData as defined in the Input parameter table in oauth2/authorize.

Output

This method returns the following values using the “application/json” format:

Attribute Presence  Value Description

access_token | REQUIRED |String | The short-lived service access token used to authenticate the subsequent API
requests within the same session.

This token SHALL be used as the value of the “Authorization: Bearer” in the HTTP
header of the API requests. When receiving an API call with an expired token, the
remote service SHALL return an error and require a new auth/login request.

refresh_token | OPTIONAL |String | The long-lived refresh token used to re-authenticate the user on the subsequent
Conditional session. The value is returned if the rememberMe parameter in the request is
“true” and the remote service supports user reauthentication.

This mechanism is based on the method described in RFC 6749 [11] par. 1.5.
NOTE: This refresh_token MAY not be compatible with refresh tokens obtained by
means of OAuth 2.0 authorization.

expires_in OPTIONAL | Number | The lifetime in seconds of the service access token. If omitted, the default
expiration time is 3600 (1 hour).

Note 24: Access tokens and refresh tokens are credentials used to access protected resources. These
tokens are strings representing a service authorization issued to the client. The strings MAY
represent specific authorization criteria, but they SHOULD be opaque to the client.

Note 25: An existing refresh token MAY be automatically revoked if the user to whom it was issued
performs a new service authorization with the rememberMe parameter set to “true”. It is up to
the remote service to support a single or multiple refresh tokens per user.

Note 26: The lifetime of the refresh_token is determined by the RSSP.

Error Case Status Code Error Error
Description



Error Case Status Code Error Error
Description
The authorization header does not match the basic HTTP 401 invalid_request Malformed
authentication pattern (“Basic base64”) - if refresh token is not (unauthorized) authentication
present parameter.
Decoded credentials are not in the form “username:password” 400 invalid_request Malformed
(bad request) username-
password.
Invalid refresh_token parameter format 400 invalid_request Invalid string
(bad request) parameter:

refresh_token

Invalid refresh_token value

400
(bad request)

invalid_request

Invalid
refresh_token

Authentication error — login failed

400
(bad request)

authentication_error

An error
occurred
during
authentication
process

Sample Request

POST /csc/v2/auth/login HTTP/1.1
Host: service.domain.org

Content-Type: application/json
{
¥

"rememberMe" : true

Authorization: Basic Y2xpZW50X21kOmNsaWVudF9zZWNyZXQ=

cURL example

-i -X POST
-H "Content-Type: application/json"

curl

-H "Authorization: Basic Y2xpZW50X21kOmNsaWVudF9zZWNyZXQ="

-d '{"rememberMe": true}'

https://service.domain.org/csc/v2/auth/login

Sample Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8

{

"refresh_token":

"expires_in": 3600

" TiHRG-bA-H3X1FQZ3ndFhkXfoP24/CKN69L8gdSYp5_pw",

"access_token": "4/CKN69L8gdSYp5_pwH3X1FQZ3ndFhkXf9P2_TiHRG-bA",

11.3 auth/revoke

Description

Revoke a service access token or refresh token that was obtained from the remote service or an
associated authorization server. The revocation process is aligned with the OAuth 2.0 revocation




mechanism described in RFC 7009 [13] and can be applied to both tokens issued through calls to
remote service methods (e.g. auth/login as defined in auth/login) and tokens issued as a result of an
OAuth 2.0 flow (e.g. oauth2/token as defined in oauth2/token). This method MAY be used to
enforce the security of the remote service. When the signature application needs to terminate a
session, it is RECOMMENDED to invoke this method to prevent further access by reusing the token.

This method allows the signature application to invalidate its tokens according to the following
approach:

e |f the token passed to the request is a refresh_token, then the authorization server SHALL
invalidate the refresh token and it SHALL also invalidate any existing access tokens based on
the same authorization grant.

e |f the token passed to the request is an access_token, then the authorization server SHALL
invalidate the access token and it SHALL NOT revoke any existing refresh token based on the
same authorization grant.

The invalidation of the token takes place immediately, and the token cannot be used again after its
revocation. As a token issued in the process of credential authorization is automatically invalidated
as soon as its usage limit is reached, a client does not have to revoke the corresponding token after
use. However, a provider SHOULD support the revocation of such token type before reaching the
usage limit.

Input

This method allows the following parameters:

Parameter Presence Value Description
token REQUIRED | String The token that the signature application wants to get revoked.
token_type_hint | OPTIONAL | String An OPTIONAL hint about the type of the token submitted for revocation. If

access_token |the parameter is omitted, the remote service SHOULD try to identify the
| token across all the available tokens.
refresh_token

clientData OPTIONAL | String The clientData as defined in the Input parameter table in oauth2/authorize.

Output

This method has no output values and the response returns “No Content” status.

Error Case Status Error Description
Code

The authorization header does not match the pattern 400 invalid_request | Malformed authorization

“Bearer [sessionKey]” (bad header.
request)

Missing or not String “token” parameter 400 invalid_request | Missing (or invalid type) string
(bad parameter token
request)

“token_hint” parameter present, not equal to 400 invalid_request | Invalid string parameter

“access_token” nor “refresh_token” (bad token_type_hint
request)




Error Case Status Error Error Description

Code

Invalid access_token or refresh_token 400 invalid_request | Invalid string parameter token
(bad
request)

Sample Request

POST /csc/v2/auth/revoke HTTP/1.1

Host: service.domain.org

Authorization: Bearer 4/CKN69L8gdSYp5_pwH3X1FQZ3ndFhkXf9P2_TiHRG-bA
Content-Type: application/json

{
"token": " TiHRG-bA-H3X1FQZ3ndFhkXf9P24/CKN69L8gdSYp5 pw",
"token_type_hint": "refresh_token",
"clientData": "12345678"

}

cURL example

curl -i -X POST
-H "Content-Type: application/json"
-H "Authorization: Bearer 4/CKN69L8gdSYp5_pwH3X1FQZ3ndFhkXf9P2_TiHRG-bA"
-d "{"token": "_TiHRG-bA-H3X1FQZ3ndFhkXf9P24/CKN69L8gdSYp5_pw",
"token_type_hint": "refresh_token",
"clientData": "12345678"}'
https://service.domain.org/csc/v2/auth/revoke

Sample Response

[HTTP/1.1 204 No Content

11.4 credentials/list

Description

Returns the list of credentials associated with a user identifier. A user MAY have one or multiple
credentials hosted by a single remote signing service provider.

If requested, it can also return the signing certificate, the whole associated certificate chain,
additional information about the signing certificate and/or information about the authorization
mechanism required to authorize the access to the credentials for remote signing.

If the user is authenticated directly by the RSSP then the user/D is implicit and SHALL NOT be
specified.

This method can also be used in case of a community of users, to let the client retrieve the list of
credentials assigned to a specific user of the community. In this case the user/D SHALL be passed
explicitly to retrieve the list of credentiallDs for a specific user. Managing a community of users that
are authenticated by the client using a specific authentication framework is out of the scope of this
specification.

Input

This method allows the following parameters:



Parameter

userlD

Presence

REQUIRED
Conditional

Value

String

Description

The identifier associated to the identity of the credential owner. This parameter
SHALL NOT be present if the service authorization is user-specific (see NOTE below).
In that case the userlD is already implicit in the service access token passed in the
Authorization header.

If a user-specific service authorization is present, it SHALL NOT be allowed to use
this parameter to obtain the list of credentials associated to a different user. The
remote service SHALL return an error in such case.

credentiallnfo

OPTIONAL

Boolean

Request to return the main information included in the public key certificate and
the public key certificate itself or the certificate chain associated to the credentials.
The default value is “false”, so if the parameter is omitted then the information will
not be returned.

certificates

OPTIONAL
Conditional

String
none |
single |
chain

Specifies which certificates from the certificate chain SHALL be returned in
certs/certificates.

* “none”: No certificate SHALL be returned.
e “single”: Only the end entity certificate SHALL be returned.
e “chain”: The full certificate chain SHALL be returned.

The default value is “single”, so if the parameter is omitted then the method will
only return the end entity certificate(s).

This parameter MAY be specified only if the parameter credentialinfo is “true”. If
the parameter credentiallnfo is not “true” and this parameter is specified its value
SHALL be ignored.

certinfo

OPTIONAL
Conditional

Boolean

Request to return various parameters containing information from the end entity
certificate(s). This is useful in case the signature application wants to retrieve some
details of the certificate(s) without having to decode it first. The default value is
“false”, so if the parameter is omitted then the information will not be returned.
This parameter MAY be specified only if the parameter credentialinfo is “true”. If
the parameter credentiallnfo is not “true” and this parameter is specified its value
SHALL be ignored.

authinfo

OPTIONAL
Conditional

Boolean

Request to return various parameters containing information on the authorization
mechanisms supported by the corresponding credential (auth group). The default
value is “false”, so if the parameter is omitted then the information will not be
returned.

This parameter MAY be specified only if the parameter credentiallnfo is “true”. If
the parameter credentiallnfo is not “true” and this parameter is specified its value
SHALL be ignored.

onlyValid

OPTIONAL
Conditional

Boolean

Request to return only credentials usable to create a valid signature. The default
value is “false”, so if the parameter is omitted then the method will return all
credentials avaialble to the owner.

The remote service MAY NOT support this parameter. When the parameter is
supported SHALL be returned in output.

lang

OPTIONAL

String

The lang as defined in the Input parameter table in info.

clientData

OPTIONAL

String

The clientData as defined in the Input parameter table in cauth2/authorize.

Note 27: User-specific service authorization include the following authType: “basic”, “digest” and
“oauth2code”. Non-user-specific service authorization include the following authType:
“external”, “TLS” or “oauth2client”.

Output

This method returns the following values using the “application/json” format:

Attribute

Presence

Value

Description




Attribute Presence  Value Description
credentiallDs | REQUIRED | Array of One or more credentiallD(s) associated with the provided or implicit userID.
String
credentiallnfos | OPTIONAL | Array of The contents of credentialinfo object are described below. If the
Conditional | Credentialinfo | credentiallnfo parameter is not “true”, this value SHALL NOT be returned.
onlyValid REQUIRED | Boolean This value SHALL be returned true when the input parameter “onlyValid”
Conditional was true, and the RSSP supports this feature, i.e. the RSSP only returns
credentials which can be used for siging.
If the values is false or the output parameter is omitted, then the list may
contain credentials which cannot be used for signing.

The ‘credentiallnfo Object’ is a JSON Object composed by the attributes specified in the following

table.
Attribute Presence  Value Description
credentiallD REQUIRED | String The credentiallD identifying one of the credentials associated with the
provided or implicit userID.
description OPTIONAL | String A free form description of the credential in the lang language. The
maximum size of the string is 255 characters.
signatureQualifier | OPTIONAL | String Identifier qualifying the type of signature this credential is suitable for
(see signatures/signDoc).
key/status REQUIRED | String The status of the signing key of the credential:
enabled |
disabled e “enabled”: the signing key is enabled and can be used for signing.
e “disabled”: the signing key is disabled and cannot be used for
signing. This MAY occur when the owner has disabled it or when
the RSSP has detected that the associated certificate is expired or
revoked.
key/algo REQUIRED | Array of String | The list of OIDs of the supported key algorithms. For example:
1.2.840.113549.1.1.1 = RSA encryption, 1.2.840.10045.4.3.2 = ECDSA
with SHA256.
key/len REQUIRED | Number The length of the cryptographic key in bits.
key/curve REQUIRED | String The OID of the ECDSA curve. The value SHALL only be returned if
Conditional keyAlgo is based on ECDSA.
cert/status OPTIONAL | String The status of validity of the end entity certificate. The value is
valid | expired | OPTIONAL, so the remote service SHOULD only return a value that is
| revoked | accurate and consistent with the actual validity status of the certificate
suspended at the time the response is generated.
cert/certificates REQUIRED | Array of String | One or more Base64-encoded X.509v3 certificates from the certificate
Conditional chain. If the certificates parameter is “chain”, the entire certificate chain
SHALL be returned with the end entity certificate at the beginning of the
array. If the certificates parameter is “single”, only the end entity
certificate SHALL be returned. If the certificates parameter is “none”, this
value SHALL NOT be returned.
cert/issuerDN REQUIRED | String The Issuer Distinguished Name from the X.509v3 end entity certificate as
Conditional UTF-8-encoded character string according to RFC 4514 [4]. This value
SHALL be returned when certinfo is “true”.
cert/serialNumber | REQUIRED | String The Serial Number from the X.509v3 end entity certificate represented
Conditional as hex-encoded string format. This value SHALL be returned when
certinfo is “true”.
cert/subjectDN REQUIRED | String The Subject Distinguished Name from the X.509v3 end entity certificate
Conditional as UTF-8-encoded character string, according to RFC 4514 [4]. This value
SHALL be returned when certinfo is “true”.




Attribute Presence  Value Description

cert/validFrom REQUIRED | String The validity start date from the X.509v3 end entity certificate as
Conditional character string, encoded as GeneralizedTime (RFC 5280 [8])

(e.g. “YYYYMMDDHHMMSSZ"”). This value SHALL be returned when
certinfo is “true”.

cert/validTo REQUIRED | String The validity end date from the X.509v3 end entity certificate as character
Conditional string, encoded as GeneralizedTime (RFC 5280 [8])

(e.g. “YYYYMMDDHHMMSSZ”). This value SHALL be returned when
certinfo is “true”.

auth/mode REQUIRED | String Specifies one of the authorization modes. For more information also see
explicit | OAuth 2.0 Authorization:
oauth2code

o ‘“explicit”: the authorization process is managed by the signature
application, which collects authentication factors of various
types.

e “oauth2code”: the authorization process is managed by the
remote service using an OAuth 2.0 mechanism based on
authorization code as described in Section 1.3.1 of RFC 6749

[11].
SCAL OPTIONAL | String Specifies if the RSSP will generate for this credential a signature
1]2 activation data (SAD) or an access token with scope “credential” that

contains a link to the hash to-be-signed:

e “1”:The hash to-be-signed is not linked to the signature
activation data.

e “2”:The hash to-be-signed is linked to the signature activation
data.

This value is OPTIONAL and the default value is “1”.
See Note below.

auth/expression | OPTIONAL | String An expression defining the combination of authentication objects
Conditional required to authorize usage of the private key.

If empty, an “AND” of all authentication objects is implied.
Supported operators are: “AND” | “OR” | “XOR” | “(” | “)” This value
SHALL NOT be returned if auth/mode is not “explicit”.

auth/objects REQUIRED | Array of The authentication object types available for this credential.
Conditional | authentication | This value SHALL only be returned if auth/mode is “explicit”.
object types
multisign REQUIRED | Number A number equal or higher to 1 representing the maximum number of
21 signatures that can be created with this credential with a single

authorization request (e.g. by calling credentials/ signHash method, as
defined in signatures/signHash, once with multiple hash values or calling
it multiple times). The value of numSignatures specified in the
authorization request SHALL NOT exceed the value of this value.

lang OPTIONAL | String The lang as defined in the Output parameter table in info.

Note 28: As described in the difference between SCAL1 and SCAL2 in Credential authorization, the

value “2” only gives information on the link between the hash and the SAD (or access token
with scope “credential”), it does not give information if a full SCAL2 as described in CEN TS 119
241-1[i.5] is implemented.

Error Case Status Error Error Description

Code
The authorization header does not match the pattern “Bearer 400 invalid_request | Malformed authorization
[sessionKey]” (bad header.

request)




Error Case Status Error Description

Code
Not empty “userID” parameter in case of user-specific 400 invalid_request | userID parameter MUST
authorization (bad be null
request)
Invalid “userID” format in case of no user-specific authorization | 400 invalid_request | Invalid parameter userID
(bad
request)
When present, invalid “certificates” parameter 400 invalid_request | Invalid parameter
(bad certificates
request)

Sample Request

POST /csc/v2/credentials/list HTTP/1.1

Host: service.domain.org

Authorization: Bearer 4/CKN69L8gdSYp5_ pwH3X1FQZ3ndFhkXf9P2_TiHRG-bA
Content-Type: application/json

{
"credentialInfo": true,
"certificates": "chain",
"certInfo": true,
"authInfo": true

b

cURL example

curl -i -X POST
-H "Content-Type: application/json"
-H "Authorization: Bearer 4/CKN69L8gdSYp5_pwH3X1FQZ3ndFhkXf9P2_TiHRG-bA"
-d '{"credentialInfo": true,
"certificates": "chain",
"certInfo": true,
"authInfo": true}'
https://service.domain.org/csc/v2/credentials/list

Sample Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8

{
"credentialIDs": [ "GX@112348", "HX0224685" ]
"credentialInfos":
[
{
"credentialID": "GX©112348",
"Key":
{
"status": "enabled",
"algo": [ "1.2.840.113549.1.1.11", "1.2.840.113549.1.1.10" ],
"len": 2048
1
"cert":
{
"status": "valid",
"certificates":
[

"<Baseb4-encoded_X.509_end_entity_certificate>",




"<Base64-encoded_X.509_intermediate_CA certificate>",
"<Base64-encoded_X.509_root_CA certificate>"
1
"issuerDN":"<X.500_issuer DN_printable_string>",
"serialNumber": "S5AAC41CD8FA22B953640",
"subjectDN": "<X.500_ subject DN_printable_string>",
"validFrom": "20200101100000Z",
"validTo": "20230101095959Z"

s
"auth": {
"mode": "explicit",
"expression”: "PIN AND OTP",
"objects": [
{
"type": "Password",
"id": "PIN",
"format": "N",
"label": "PIN",
"description”: "Please enter the signature PIN"
s
{
"type": "Password",
"id": "OTP",
"format": "N",
"generator": "totp",
"label": "Mobile OTP",
"description”: "Please enter the 6 digit code you received by
SMS*"
)
1
"multisign": 5,
"lang": "en-US"
b
{
"credentialID": " HX@224685",
}
1
}

11.5 credentials/info

11.5.0.1 Description
Retrieves the credential. If requested, it can also return the signing certificate, the whole associated

certificate chain, additional information about the signing certificate and/or information about the
authorization mechanism required to authorize the access to the credential for remote signing.

11.5.0.2 Input

This method allows the following parameters:

credentiallD | REQUIRED | String The unique identifier associated to the credential.

certificates | OPTIONAL | String The certificates as defined in the Input parameter table in credentials/list.
none | single |
chain

certinfo OPTIONAL | Boolean The certinfo as defined in the Input parameter table in credentials/list.




Parameter Presence Value Description

authinfo OPTIONAL | Boolean The authinfo as defined in the Input parameter table in credentials/list.

lang OPTIONAL | Strings The lang as defined in the Input parameter table in info.

clientData | OPTIONAL | String The clientData as defined in the Input parameter table in
oauth2/authorize.

11.5.0.3 Output:

This method returns the following values using the “application/json” format:

Attribute Presence Value Description
description OPTIONAL String The description as defined in the credentiallnfo Object
attribute table in credentials/list.
signatureQualifier | OPTIONAL String Identifier qualifying the type of signature this credential is
suitable for (see signatures/signDoc).
key/status REQUIRED String The key/status as defined in the credentiallnfo Object
enabled | disabled attribute table in credentials/list.
key/algo REQUIRED Array of String The key/algo as defined in the credentialinfo Object attribute
table in credentials/list.
key/len REQUIRED Number The key/len as defined in the credentialinfo Object attribute
table in credentials/list.
key/curve REQUIRED String The key/curve as defined in the credentiallnfo Object
Conditional attribute table in credentials/list.
cert/status OPTIONAL String The cert/status as defined in the credentiallnfo Object
valid | expired | attribute table in credentials/list.
revoked | suspended
cert/certificates REQUIRED Array of String The cert/certificates as defined in the credentiallnfo Object
Conditional attribute table in credentials/list.
cert/issuerDN REQUIRED String The cert/issuerDN as defined in the credentiallnfo Object
Conditional attribute table in credentials/list.
cert/serialNumber | REQUIRED String The cert/serialNumber as defined in the credentiallnfo Object
Conditional attribute table in credentials/list.
cert/subjectDN REQUIRED String The cert/subjectDN as defined in the credentialinfo Object
Conditional attribute table in credentials/list.
cert/validFrom REQUIRED String The cert/validFrom as defined in the credentiallnfo Object
Conditional attribute table in credentials/list.
cert/validTo REQUIRED String The cert/validTo as defined in the credentiallnfo Object
Conditional attribute table in credentials/list.
auth/mode REQUIRED String The auth/mode as defined in the credentiallnfo Object
explicit | oauth2code attribute table in credentials/list.
auth/expression | OPTIONAL String The auth/expression as defined in the credentiallnfo Object
Conditional attribute table in credentials/list.
auth/objects REQUIRED Array of authentication | The auth/objects as defined in the credentialinfo Object
Conditional object types attribute table in credentials/list.
SCAL OPTIONAL String The SCAL as defined in the credentiallnfo Object attribute
1|2 table in credentials/list.
See the Note in credentials/list about the SCAL attribute.
multisign REQUIRED Number The multisign as defined in the credentialinfo Object
>1 attribute table in credentials/list.
lang OPTIONAL String The lang as defined in the Output parameter table in info.




Error Case Status Error Error Description
Code

The authorization header does not match the pattern 400 invalid_request | Malformed authorization header.
“Bearer [sessionKey]” (bad
request)

Missing or not String “credentiallD” parameter 400 invalid_request | Missing (or invalid type) string
(bad parameter credentiallD
request)

Invalid “credentiallD” parameter 400 invalid_request | Invalid parameter credentiallD
(bad
request)

Invalid “certificates” parameter 400 invalid_request | Invalid parameter certificates
(bad
request)

Sample Request

POST /csc/v2/credentials/info HTTP/1.1

Host: service.domain.org

Authorization: Bearer 4/CKN69L8gdSYp5_pwH3X1FQZ3ndFhkXf9P2_TiHRG-bA
Content-Type: application/json

{
"credentialID": "GX©112348",
"certificates": "chain",
"certInfo": true,
"authInfo": true

¥

cURL example

curl -i -X POST
-H "Content-Type: application/json"
-H "Authorization: Bearer 4/CKN69L8gdSYp5_pwH3X1FQZ3ndFhkXf9P2_TiHRG-bA"
-d "{"credentialID": "GX©112348",
"certificates": "chain",
"certInfo": true,
"authInfo": true }'
https://service.domain.org/csc/v2/credentials/info

Sample Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8

{
"key":{

"status":"enabled",

"algo":[
"1.2.840.113549.1.1.1",
"9.4.0.127.0.7.1.1.4.1.3"

1,

"len":2048

1
"cert":{

"status":"valid",

"certificates":[
"<Base64-encoded_X.509 _end_entity certificate>",
"<Base64-encoded_X.509 intermediate_ CA certificate>",
"<Base64-encoded_X.509 root_CA certificate>"




1,

"issuerDN":"<X.500_issuer_ DN_printable_string>",
"serialNumber" :"5AAC41CD8FA22B953640",
"subjectDN":"<X.500_subject_DN_printable_string>",
"validFrom":"20180101100000Z",
"validTo":"20190101095959Z"

s
"auth": {
"mode": "explicit",
"expression”: "PIN AND OTP",
"objects": {
{
"type": "Password",
"id": "PIN",
"format": "N",
"label": "PIN",
"description”: "Please enter the signature PIN"
¥
{
"type": "Password",
"id": "OTP",
"format": "N",
"generator": "totp",
"label": "Mobile OTP",
"description”: "Please enter the 6 digit code you received by SMS"
}
}
}
"multisign":5,
"lang":"en-US"

}

11.6 credentials/authorize
Description

Authorize the access to the credential for remote signing, according to the authorization
mechanisms associated to it. This method returns the Signature Activation Data (SAD) required to
authorize the signatures/signHash method, as defined in sighatures/signHash or signatures/signDoc
method, as defined in signatures/signDoc.

Authentication objects and corresponding values collected from the user SHALL be included in the
request according to the requirements specified by the credentials/info method, as defined in
credentials/info.

This method SHALL be used in case of “explicit” authorization. This method SHALL also be used in
case that no authentication objects are required, to trigger a possible authorization mechanism
managed by the remote service. This method SHALL NOT be used in case of “oauth2” credential
authorization; instead, any of the available OAuth 2.0 authorization mechanisms SHALL be used.

The numSignatures parameter SHALL indicate the total number of signatures to authorize. In case of
multi-signature transactions where the signatures/signHash method is invoked multiple times, the
signature application SHALL obtain a new SAD by invoking the credentials/extendTransaction
method, as defined in credentials/extendTransaction, before the current SAD expires. In such cases
the hashes to be signed may not all be available when the authorization is performed, for example in
case of multiple signatures applied to a PDF file with a single credential. Further hashes should then
be passed as an input to credentials/extendTransaction to make each SAD calculation dependent on
the data to be signed. This approach may break the support of SCAL 2 requirements, therefore a




remote signing service MAY fail if the hash parameter does not contain a number of hash values
corresponding to the value in numSignatures.

Input

This method allows the following parameters:

Parameter Presence  Value Description

credentiallD REQUIRED | String The credentiallD as defined in the Input parameter table in
credentials/info.

numSignatures REQUIRED | Number The number of signatures to authorize. Multi-signature transactions can

be obtained by using a combination of passing an array of hash values
and calling the signatures/signHash method, as defined in
signatures/signHash, multiple times.

hashes REQUIRED | Array of String | One or more Base64-encoded hash values to be signed. It allows the
Conditional server to bind the SAD to the hash(es), thus preventing an authorization
to be used to sign a different content. If the SCAL parameter returned by
credentials/info method, as defined in credentials/info, for the current
credentiallD is “2” the hash parameter SHALL be used and the number
of hash values SHOULD correspond to the value in numSignatures. If the
SCAL parameter is “1”, the hash parameter is OPTIONAL.

hashAlgorithmOID | REQUIRED | String String containing the OID of the hash algorithm used to generate the
Conditional hashes.
authData REQUIRED | Array of The authentication objects as described by the authentication object
Conditional | authentication | types in credentials/info. It SHALL be used only when auth/mode from
objects credentials/info is “explicit”.
description OPTIONAL | String A free form description of the authorization transaction in the lang

language. The maximum size of the string is 500 characters. It can be
useful to provide some hints about the occurring transaction.

clientData OPTIONAL | String The clientData as defined in the Input parameter table in
oauth?2/authorize.

Output

With HTTP status code 200, the method returns the Signature Activation Data using the
“application/json” format:

Attribute Presence Value Description

SAD REQUIRED | String | The Signature Activation Data (SAD) to be used as input to the signatures/signHash
method, as defined in signatures/signHash.

expiresin | OPTIONAL | Number | The lifetime in seconds of the SAD. If omitted, the default expiration time is 3600 (1
hour).

With HTTP status code 202 the method indicates that some authorization is still underway. The
result contains a handle that can be used to poll the state of the authorization via
credentials/authorizeCheck.

Attribute  Presence Value Description

handle REQUIRED | String | An opaque handle that can be used to request the state of the authorization.

Error Case Status  Error Error Description
Code



Error Case Status Error Description

Code

The authorization header does not match the 400 invalid_request Malformed authorization

pattern “Bearer [sessionKey]” (bad header.
request)

Missing or not String “credentiallD” parameter 400 invalid_request Missing (or invalid type)
(bad string parameter credentiallD
request)

Invalid “credentiallD” parameter 400 invalid_request Invalid parameter
(bad credentiallD
request)

Signing key for “credentiallD” is disabled 400 invalid_request The credential identified by
(bad credentiallD is disabled
request)

Missing or not integer “numSignatures” parameter | 400 invalid_request Missing (or invalid type)
(bad integer parameter
request) numsSignatures

“numSignatures” < 1 400 invalid_request Invalid value for parameter
(bad numSignatures
request)

“numSignatures” > “multisign” 400 invalid_request Numbers of signatures is too
(bad high
equrest)

Invalid authentication data 400 invalid_authentication_data | The authentication data is
(bad invalid
request)

Credential locked 400 invalid_request Credential locked
(bad
request)

Note 29: In case wrong authentication data is provided several times, the remote signing service
MAY lock the credential or the usage of respective authentication objects. The policy adopted
by the RSSP in this regard is out of the scope of this specification.

Sample Request

POST /csc/v2/credentials/authorize HTTP/1.1

Host: service.domain.org

Content-Type: application/json

Authorization: Bearer 4/CKN69L8gdSYp5_ pwH3X1FQZ3ndFhkXf9P2_TiHRG-bA

{
"credentialID":"GX0112348",

"numSignatures":2,

"hashes": [
"sTOgwOm+474gFj0qex1iSNspKgbcse4IeiqlDg/HWuI=",
"c1RPZ3dPbSsONzRnRmowc TBAMW1TTNNWS3FiY3N1INE1laXFsRGcvSFd1STO="

Is
"hashAlgorithmOID": "2.16.840.1.101.3.4.2.1",
"authData": [
{
"id": "PIN",
"value": "123456"
3
{

Ilidll: IIOTPII,
"value": "738496"




}
1

"clientData":"12345678"

cURL example

curl -X POST
-H "Content-Type: application/json"
-H "Authorization: Bearer 4/CKN69L8gdSYp5_pwH3X1FQZ3ndFhkXf9P2_TiHRG-bA"
-d '{ "credentialID": "GX©112348",
"numSignatures": 2,
"hashes": [ "sTOgwOm+474gFj0qox1iSNspKgbcse4IeiqlDg/HWuI=",
"c1RPZ3dPbSsONzRnRmowc TBAMWITTNNwWS3FiY3NINE11laXFsRGcvSFd1STO="

1,
"hashAlgorithmOID": "2.16.840.1.101.3.4.2.1",
"authData": [
{
"id": "PIN",
"value": "123456"
¥
{
"id": "OTP",
"value": "738496"
}
1,

"clientData": "12345678" }'
https://service.domain.org/csc/v2/credentials/authorize

Sample Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8

{
}

"SAD":" TiHRG-bAH3X1FQZ3ndFhkXf9P24/CKN69L8gdSYp5_pw"

Sample Response

HTTP/1.1 202 OK
Content-Type: application/json;charset=UTF-8

"handle": "878287f37b2bv293bv2bv237bv297bvbv"

11.7 credentials/authorizeCheck

Description

After a credentials/authorize with HTTP result code 202, the client may use the handle returned to
poll the authorization state.

Input

This method allows the following parameters:



Parameter Presence Value Description

handle REQUIRED String The handle value returned from credentials/authorize.

Output

With HTTP status code 200, the method returns the Signature Activation Data using the
“application/json” format:

Attribute Presence Value Description

SAD REQUIRED | String | The Signature Activation Data (SAD) to be used as input to the signatures/signHash
method, as defined in signatures/signHash.

expiresin | OPTIONAL | Number | The lifetime in seconds of the SAD. If omitted, the default expiration time is 3600 (1
hour).

With HTTP status code 202 the method indicates that some authorization is still underway. The
result contains a handle that can be used to poll the state of the authorization via repeated calls to
credentials/authorizeCheck.

Attribute  Presence Value Description

handle REQUIRED | String | An opaque handle that can be used to request the state of the authorization.

Error Case Status Error Description
Code

The authorization header does not match the pattern 400 invalid_request Malformed

“Bearer [sessionKey]” (bad authorization
request) header.

Invalid “handle” parameter 400 invalid_request Invalid parameter
(bad handle
request)

Invalid authentication data 400 invalid_authentication_data | The authentication
(bad data is invalid
request)

Credential locked 400 invalid_request Credential locked
(bad
request)

Note 30: In case wrong authentication data is provided several times, the remote signing service
MAY lock the credential or the usage of respective authentication objects. The policy adopted
by the RSSP in this regard is out of the scope of this specification.

Sample Request

POST /csc/v2/credentials/authorizeCheck HTTP/1.1

Host: service.domain.org

Content-Type: application/json

Authorization: Bearer 4/CKN69L8gdSYp5_pwH3X1FQZ3ndFhkXf9P2_TiHRG-bA

"handle":"878287f37b2bv293bv2bv237bv297bvbv"

cURL example



curl -X POST
-H "Content-Type: application/json"
-H "Authorization: Bearer 4/CKN69L8gdSYp5_pwH3X1FQZ3ndFhkXf9P2_TiHRG-bA"
-d '{ "handle":"878287f37b2bv293bv2bv237bv297bvbv" }'
https://service.domain.org/csc/v2/credentials/authorizeCheck

Sample Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8

{
}

"SAD": " TiHRG-bAH3X1FQZ3ndFhkXf9P24/CKN69L8gdSYp5 pw"

Sample Response

HTTP/1.1 202 OK
Content-Type: application/json;charset=UTF-8

"handle": "878287f37b2bv293bv2bv237bv297bvbv"

11.8 credentials/getChallenge
Description

Get a challenge for the referenced authentication object.
Input

This method allows the following parameters:

Parameter Presence Value Description

credentiallD REQUIRED | String | The identifier associated to the credential.

authObjectID REQUIRED | String | The identifier of the authentication object we need a challenge for.

Output

With HTTP status code 200, the method returns a challenge:

Attribute Presence Value Description

challenge REQUIRED String The authentication object challenge.

With HTTP status code 204, the method indicates that a challenge has been sent by out of band
means, returning no output values.

Error Case Status Error Error Description

Code
The authorization header does not match the pattern “Bearer 400 invalid_request | Malformed authorization
[sessionKey]” (bad header.

request)




Error Case Status Error Description

Code

Invalid “credentiallD” parameter 400 invalid_request | Invalid parameter
(bad credentiallD
request)

Invalid “authObjectID” parameter 400 invalid_request | Invalid parameter
(bad authObjectID
request)

Sample | - in-band challenge

Sample Request

POST /csc/v2/credentials/getChallenge HTTP/1.1

Host: service.domain.org

Content-Type: application/json

Authorization: Bearer 4/CKN69L8gdSYp5_pwH3X1FQZ3ndFhkXf9P2_TiHRG-bA

{
"credentialID": "GX©112348",

"authObjectID": "fallback question”

cURL example

curl -X POST
-H "Content-Type: application/json"
-H "Authorization: Bearer 4/CKN69L8gdSYp5_pwH3X1FQZ3ndFhkXf9P2_TiHRG-bA"
-d '{
"credentialID": "GX©112348",
"authObjectID": "fallback question"
}l

https://service.domain.org/csc/v2/credentials/getChallenge

Sample Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8

{
}

"challenge": "What's your mother's birth name?"

Sample Il - out-of-band challenge

Sample Request

POST /csc/v2/credentials/getChallenge HTTP/1.1

Host: service.domain.org

Content-Type: application/json

Authorization: Bearer 4/CKN69L8gdSYp5_ pwH3X1FQZ3ndFhkXf9P2_TiHRG-bA

{
"credentialID": "GX0112348",

"authObjectID": "OTP"

cURL example



curl -X POST
-H "Content-Type: application/json"
-H "Authorization: Bearer 4/CKN69L8gdSYp5_pwH3X1FQZ3ndFhkXf9P2_TiHRG-bA"
-d '{
"credentialID": "GX0112348",
"authObjectID": "OTP"
}l
https://service.domain.org/csc/v2/credentials/getChallenge

Sample Response

[ HTTP/1.1 204 OK

11.9 credentials/extendTransaction
Description

Extends the validity of a multi-signature transaction authorization by obtaining a new Signature
Activation Data (SAD). This method SHALL be used in case of multi-signature transaction when the
APl method signatures/signHash, as defined in signatures/signHash, is invoked multiple times with a
single credential authorization event.

It can also be used to renew a SAD, before it expires, when signature operations take longer than
allowed by the expiresin value. Expired SAD cannot be extended.

The RSSP SHALL invalidate the SAD when the number of authorized signatures, specified with
numSignatures in the credential authorization event, has been created.

Input

This method allows the following parameters:

Parameter Presence Value Description

credentiallD REQUIRED | String | The credentiallD as defined in the Input parameter table in credentials/info.

hashes REQUIRED |Array | One or more Base64-encoded hash values to be signed. It allows the server to
Conditional | of bind the new SAD to the hash, thus preventing an authorization to be used to

String | sign a different content. It SHALL be used if the SCAL parameter returned by
credentials/info, as defined in credentials/info, for the current credentiallD is “2”
, otherwise it is OPTIONAL.

hashAlgorithmOID | REQUIRED | String | String containing the OID of the hash algorithm used to generate the hashes.

Conditional
SAD REQUIRED | String | The current unexpired Signature Activation Data. This token is returned by the
credentials/authorize, as defined in credentials/authorize, or by the previous call
to credentials/extendTransaction.
clientData OPTIONAL | String | The clientData as defined in the Input parameter table in cauth2/authorize.

Note 31: This method can be used for applying multiple signatures to a PDF document from a single
user, e.g. to sign separately different parts of the document, with a single credential
authorization event. The PDF standard adopts nested signatures so the hashes for multiple
signatures can only be calculated after the previous signature has been created. This method
allows to calculate a new SAD based on new hash values that were not available when the
credential authorization event occurred. The sequence diagram in Create a remote multi-
signatures transaction with a PDF document shows this use case.




Output

This method returns the following values using the “application/json” format:

Attribute Presence Value Description

SAD REQUIRED | String | The new Signature Activation Data required to sign multiple times with a single
authorization.

expiresin | OPTIONAL | Number | The lifetime in seconds of the SAD. If omitted, the default expiration time is 3600 (1
hour).

Error Case Error Error Description

The authorization header does not match the pattern “Bearer 400 invalid_request | Malformed authorization
[sessionKey]” (bad header.
request)

Note 32: In case a wrong PIN or OTP is provided several times, the remote signing service MAY lock
the credential or the usage of the PIN or OTP. The policy adopted by the RSSP in this regard is
out of the scope of this specification.

Sample Request

POST /csc/v2/credentials/extendTransaction HTTP/1.1

Host: service.domain.org

Content-Type: application/json

Authorization: Bearer 4/CKN69L8gdSYp5_ pwH3X1FQZ3ndFhkXf9P2_TiHRG-bA

{
"credentialID":"GX0112348",

"hashes": [
"W1TTnNwS3FiY3N1NE1llaXFsRGcvSFd1STO="
1,
"hashAlgorithmOID": "2.16.840.1.101.3.4.2.1",
"SAD":" TiHRG-bAH3X1FQZ3ndFhkXf9P24/CKN69L8gdSYp5 pw",
"clientData":"12345678"

cURL example

curl -X POST
-H "Content-Type: application/json"
-H "Authorization: Bearer 4/CKN69L8gdSYp5_pwH3X1FQZ3ndFhkXf9P2_TiHRG-bA"
-d '{ "credentialID": "GX©112348",
"hashes": [ "W1TTnNwS3FiY3N1NEllaXFsRGcvSFd1STe=" ],
"hashAlgorithmOID": "2.16.840.1.101.3.4.2.1",
"SAD": " TiHRG-bAH3X1FQZ3ndFhkXf9P24/CKN69L8gdSYp5 pw",
"clientData": "12345678" }'
https://service.domain.org/csc/v2/credentials/extendTransaction

Sample Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8

{



"SAD":"1/UsHDJ98349h9fgh9348hKKHDkHWVk1/8hsAW5usc8_5="

11.10 signatures/signHash

Description

Calculate the remote digital signature of one or multiple hash values provided in input.

This method requires service and credential authorization.

The signing application MUST pass an access token with scope “service” or “credential” in the
“Authorization” HTTP header as defined in RFC 6750 [12].

If the credential authorization mode is “explicit”, the signing application MUST pass Signature
Activation Data (SAD) in the SAD request parameter (see below). SAD may be obtained from
credential/authorize.

If the credential authorization mode is “oauth2code” and the access token passed in the
“Authorization” HTTP header has scope “service”, the signing application MUST pass an access token
with scope “credential” in the SAD request parameter. This is not required, if the the access token

passed in the “Authorization” HTTP header has scope “credentia

III

In case of multi-signature transactions, the SAD SHALL be updated with
credentials/extendTransaction, as defined in credentials/extendTransaction, every time this method
is invoked until the maximum number of authorized signatures has been generated.

Input

This method allows the following parameters:

Parameter Presence Value Description
credentiallD REQUIRED | String | The credentiallD as defined in the Input parameter table in credentials/info.
SAD REQUIRED | String | The Signature Activation Data returned by the Credential Authorization
Conditional methods. Not needed if the signing application has passed an access token in
the “Authorization” HTTP header with scope “credential”, which is also good for
the credential identified by credentiallD.
Note: For backward compatibility, signing applications MAY pass access tokens
with scope “credential” in this parameter.
hashes REQUIRED |Array | One or more hash values to be signed. This parameter SHALL contain the
of Base64-encoded raw message digest(s).
String
hashAlgorithmOID | REQUIRED | String | The OID of the algorithm used to calculate the hash value(s). This parameter
Conditional SHALL be omitted or ignored if the hash algorithm is implicitly specified by the
signAlgo algorithm. Only hashing algorithms as strong or stronger than SHA256
SHALL be used. The hash algorithm SHOULD follow the recommendations of
ETSITS 119 312 [21].
signAlgo REQUIRED | String | The OID of the algorithm to use for signing. It SHALL be one of the values
allowed by the credential as returned in keyAlgo by the credentials/info
method, as defined in credentials/info or by credentials/list method, as defined
in credentials/list.
signAlgoParams REQUIRED | String | The Base64-encoded DER-encoded ASN.1 signature parameters, if required by
Conditional the signature algorithm. Some algorithms like RSASSA-PSS, as defined in RFC

8017 [18], may require additional parameters.




Parameter Presence Value Description

operationMode OPTIONAL | String | The type of operation mode requested to the remote signing server. It SHALL
take one of the following values:

e “A”:an asynchronous operation mode is requested.
e “S”:asynchronous operation mode is requested.

The default value is “S”, so if the parameter is omitted then the remote signing
server will manage the request in synchronous operation mode.

validity_period OPTIONAL | Integer | Maximum period of time, expressed in milliseconds, until which the server
Conditional SHALL keep the request outcome(s) available for the client application retrieval.
This parameter MAY be specified only if the parameter operationMode is “A”. If
the parameter operationMode is not “A” and this parameter is specified its
value SHALL be ignored. The RSSP SHOULD define in its service policy the
default and maximum values of this parameter. If the RSSP does not define in its
service policy any default and maximum values of this parameter it means that
any value MAY be passed in this parameter.

response_uri OPTIONAL | String | Value of one location where the server will notify the signature creation
Conditional operation completion, as an URI value. This parameter MAY be specified only if
the parameter operationMode is “A”. If the parameter operationMode is not “A”
and this parameter is specified its value SHALL be ignored. If the parameter
operationMode is “A” and this parameter is omitted then the remote signing
server will not make any notification.

clientData OPTIONAL | String | The clientData as defined in the Input parameter table in oauth2/authorize.

Output

This method returns the following values using the “application/json” format:

Attribute  Presence  Value Description

signatures | REQUIRED | Array | One or more Base64-encoded signed hash(s). In case of multiple signatures, the signed
Conditional | of hashes SHALL be returned in the same order as the corresponding hashes provided as
String | an input parameter. This value SHALL be returned when operationMode is not “A”.

responselD | REQUIRED | String | Arbitrary string value generated by the server uniquely identifying the response

Conditional originated from the server itself. This value SHALL be returned when operationMode is
apn

Error Case Status  Error Error Description
Code

The authorization header does not match the pattern 400 invalid_request | Malformed authorization

“Bearer [sessionKey]” (bad header.
request)

Missing or not String “SAD” parameter 400 invalid_request | Missing (or invalid type) string
(bad parameter SAD
request)

Invalid “SAD” parameter 400 invalid_request | Invalid parameter SAD
(bad
request)

Missing or not String “credentiallD” parameter 400 invalid_request | Missing (or invalid type) string
(bad parameter credentiallD
request)

Invalid “credentiallD” parameter 400 invalid_request | Invalid parameter credentiallD
(bad
request)




Error Case

Status

Code

Error Description

invalid_request

Missing or not Array “hash” parameter 400 Missing (or invalid type) array
(bad parameter hash
request)

Empty hash parameter 400 invalid_request | Empty hash array
(bad
request)

Invalid Base64 hash element 400 invalid_request | Invalid Base64 hash string
(bad parameter
request)

Unauthorized hash 400 invalid_request | Hash is not authorized by the
(bad SAD.
request)

Missing or not String “signAlgo” parameter 400 invalid_request | Missing (or invalid type) string
(bad parameter signAlgo
request)

Missing or not String “signAlgoParams” parameter 400 invalid_request | Missing (or invalid type) string
(bad parameter signAlgoParams
request)

Missing or not String “hashAlgorithmOID” parameter when | 400 invalid_request | Missing (or invalid type) string

“signAlgo” is equal to “1.2.840.113549 .1.1.1” (bad parameter hashAlgorithmOID
request)

Invalid “hashAlgorithmOID” parameter 400 invalid_request | Invalid parameter
(bad hashAlgorithmOID
request)

Invalid “signAlgo” parameter 400 invalid_request | Invalid parameter signAlgo
(bad
request)

When present, invalid “operationMode” parameter 400 invalid_request | Invalid parameter
(bad operationMode
request)

When present, invalid “validity_period” parameter 400 invalid_request | Invalid parameter
(bad validity_period
request)

When present, out of bounds “validity_period” parameter 400 invalid_request | Out of bounds parameter
(bad validity_period
request)

When present, invalid “response_uri” parameter 400 invalid_request | Invalid parameter response_uri
(bad
request)

When present, invalid “clientData” format (not string) 400 invalid_request | Invalid parameter clientData
(bad
request)

Invalid “hashes” length 400 invalid_request | Invalid digest value length
(bad
request)

The OTP used to generate the “SAD” is invalid 400 invalid_otp The OTP is invalid
(bad
request)

Expired “SAD” 400 invalid_request | SAD expired
(bad

request)




Error Case Status  Error Error Description

Code

Expired credential 400 invalid_request | Signing certificate ‘O=[organizat
(bad ion],CN=[comm on_name]’ is
request) expired.

Sample Request

POST /csc/v2/signatures/signHash HTTP/1.1

Host: service.domain.org

Content-Type: application/json

Authorization: Bearer 4/CKN69L8gdSYp5_pwH3X1FQZ3ndFhkXf9P2_TiHRG-bA

{
"credentialID":"GX0112348",

"SAD":" TiHRG-bAH3X1FQZ3ndFhkXf9P24/CKN69L8gdSYp5 pw",
"hashes": [
"sTOgwOm+474gFj0gqox1iSNspKgbcse4IeiqlDg/HWuI=",
"c1RPZ3dPbSsONzRnRmowc TBAMW1TTnNwS3FiY3NINE11aXFsRGcvSFd1STO="
1,
"hashAlgorithmOID":"2.16.840.1.101.3.4.2.1",
"signAlgo":"1.2.840.113549.1.1.1",
"clientData":"12345678"

cURL example

curl -X POST
-H "Content-Type: application/json"
-H "Authorization: Bearer
4/CKN69L8gdSYp5_pwH3X1FQZ3ndFhkXf9P2_TiHRG-bA"
-d '{ "credentialID": "GX©112348",
"SAD": "_TiHRG-bAH3X1FQZ3ndFhkXf9P24/CKN69L8gdSYp5 pw",
"hashes": [ "sTOgwOm+474gFj0qox1iSNspKgbcse4IeiqlDg/HWuI=",
"c1RPZ3dPbSsONzRnRmowcTBAMW1TTnNwS3FiY3NINE11aXFsRGcvSFd1STO="
1,
"hashAlgorithmOID": "2.16.840.1.101.3.4.2.1",
"signAlgo": "1.2.840.113549.1.1.1",
"clientData": "12345678"}"
https://service.domain.org/csc/v2/signatures/signHash

Sample Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8

{

"signatures":

[
"KedJuTob5gtvYx9gM3k3gm7kbLBwWVbEQR126S2tmXjgNND7MRGtoew==",
"Idhef7xzgtvYx9gM3k3gm7kbLBwVbE98239S2tm8hUh85KKsfdowel=="

Sample Request

POST /csc/v2/signatures/signHash HTTP/1.1

Host: service.domain.org

Content-Type: application/json

Authorization: Bearer 4/CKN69L8gdSYp5_pwH3X1FQZ3ndFhkXf9P2_TiHRG-bA



"credentialID":"GX0112348",
"SAD":" TiHRG-bAH3X1FQZ3ndFhkXf9P24/CKN69L8gdSYp5_ pw",
"hashes": [
"sTOgwOm+474gFj0qox1iSNspKgbcse4IeiqlDg/HWuI=",
"c1RPZ3dPbSsONzRnRmowc TBAMWITTNNwWS3FiY3NINE11laXFsRGcvSFd1STO="
1,
"hashAlgorithmOID":"2.16.840.1.101.3.4.2.1",
"signAlgo":"1.2.840.113549.1.1.1",
"operationMode": "A",
"clientData":"12345678"

cURL example

curl -X POST
-H "Content-Type: application/json"
-H "Authorization: Bearer
4/CKN69L8gdSYp5_pwH3X1FQZ3ndFhkXf9P2_TiHRG-bA"
-d '{ "credentialID": "GX©112348",
"SAD": "_TiHRG-bAH3X1FQZ3ndFhkXf9P24/CKN69L8gdSYp5 pw",
"hashes": [ "sTOgwOm+474gFj0qox1iSNspKgbcse4IeiqlDg/HWuI=",
"c1RPZ3dPbSsONzRnRmowc TBAMWITTNNwWS3FiY3NINE11laXFsRGcvSFd1STO="
1,
"hashAlgorithmOID": "2.16.840.1.101.3.4.2.1",
"signAlgo": "1.2.840.113549.1.1.1",
"operationMode": "A",
"clientData": "12345678"}"
https://service.domain.org/csc/v2/signatures/signHash

Sample Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8

{
}

"responseID":"158112-652341-khj"

Sample Request

POST /csc/v2/signatures/signHash HTTP/1.1

Host: service.domain.org

Content-Type: application/json

Authorization: Bearer 5/CKN69L8gdSYp5_ pwH3X1FQZ3ndFhkXf9P2_TiHRG-bA

{
"credentialID":"GX0112348",

"hashes": [
"sTOgwOm+474gFj0qox1iSNspKgbcse4IeiqlDg/HWuI=",
"c1RPZ3dPbSsONzRnRmowc TBAMW1TTnNwS3FiY3NINE11aXFsRGcvSFd1STO="
1,
"hashAlgorithmOID":"2.16.840.1.101.3.4.2.1",
"signAlgo":"1.2.840.113549.1.1.1",
"operationMode": "A",
"clientData":"12345678"

cURL example



curl -X POST
-H "Content-Type: application/json"
-H "Authorization:
5/CKN69L8gdSYp5_pwH3X1FQZ3ndFhkXfOP2_TiHRG-bA"
-d '{ "credentialID": "GX©112348",

Bearer

"hashes": [ "sTOgwOm+474gFj0qox1iSNspKgbcse4IeiqlDg/HWuI=",
"c1RPZ3dPbSsONzRNRmowc TBAMW1TTNNwWS3FiY3N1INE1laXFsRGcvSFd1STO="

1,

"hashAlgorithmOID": "2.16.840.1.101.3.4.2.1",
"signAlgo": "1.2.840.113549.1.1.1",

"operationMode": "A",

"clientData": "12345678"}"

https://service.domain.org/csc/v2/signatures/signHash

Sample Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8

{

"responseID":"158112-652341-khj"

}

11.11 signatures/signDoc

Description

Create one or more AdES signatures. Either the documents to be signed or the SDRs (in this
specification it is intended to be the hash values of the documents to be signed) SHALL be provided
to the method. An AdES signature will be created for each of these input components. Other
components are used to select the type of signature that will be created for each document or
document representation.

This method requires service and credential authorization as defined in signatures/signHash.

Input

This method allows the following parameters:

Parameter Presence  Value Des
credentiallD REQUIRED |String | The credentiallD as defined in the Input parameter table in credentials/info.
Conditional At least one of the two values credentiallD and signatureQualifier SHALL be
present. Both values MAY be present.
signatureQualifier | REQUIRED | String | ldentifier of the signature type to be created, e.g. “eu_eidas_ges” to denote
Conditional a Qualified Electronic Signature according to elDAS. This specification defines
a set of such identifiers (see table below), service providers can also define
and use their own identifiers. At least one of the two values credentiallD and
signatureQualifier SHALL be present. Both values MAY be present.
SAD REQUIRED |String | The Signature Activation Data returned by the Credential Authorization
Conditional methods. Not needed if the signing application has passed an access token

with scope “credential” in the “Authorization” HTTP header, which is also
good for the credential identified by credentialID or the signature qualifier
identified by signatureQualifier.

Note: For backward compatibility, signing applications MAY pass access
tokens with scope “credential” in this parameter.




Parameter Presence  Value Description
documentDigests REQUIRED |JSON An array containing JSON objects containing a hash value representing one or
Conditional | Array more SDRs, the respective digest algorithm OID used to calculate this hash
value and further request parameters (see below). This parameter or the
parameter documents MUST be present in a request. Otherwise the method
SHALL return an error condition.
documents REQUIRED | JSON An array containing JSON objects, each of them containing a base64-encoded
Conditional | array document content to be signed and further request parameter. This
parameter or the parameter documentDigests MUST be present in a request.
Otherwise the method SHALL return an error condition.
operationMode OPTIONAL | String | The operationMode as defined in the Input parameter table in
signatures/signHash.
validity_period OPTIONAL | Integer |The validity_period as defined in the Input parameter table in
Conditional signatures/signHash.
response_uri OPTIONAL | String | The response_uri as defined in the Input parameter table in
Conditional signatures/signHash.
clientData OPTIONAL |String | The clientData as defined in the Input parameter table in cauth2/authorize.
returnValidationinfo | OPTIONAL | Boolean | This parameter SHALL be set to “true” to request the service to return the
“validationInfo” as defined below. The default value is “false”, i.e. no
“validationInfo” info is provided.
This parameter SHALL be supported in conjunction with “signature_format”
“P”, “conformance_level” “AdES-B-LT” and use of “documentDigests”. For all
other cases, the info methods states if this feature is supported or not.

This table lists the pre-defined signature qualifier to be used in conjunction with the
signatureQualifier parameter.

Note 33: *signatureQualifiers follow the syntax X_Y_Z (e.g. eu_eidas_ges) where: X: The 1ISO 3166-1
[22] Alpha-2 code of the Country where the signature legislation is defined (e.g. eu for Europe).
Y: The shortform name of the legislation (e.g. eidas for Electronic Identification And Trust
Services) Z: The shortform name of the signature type defined by the legislation (e.g. ges for
Qualified Electronic Signatures)

Identifier Description

eu_eidas_ges This identifier refers to a qualified electronic signature under elDAS.

eu_eidas_aes This identifier refers to an advanced electronic signature under elDAS.

eu_eidas_aesqc This identifier refers to an advanced electronic signature with qualified certificate under elDAS.
eu_eidas_geseal This identifier refers to a qualified electronic seal under elDAS.

eu_eidas_aeseal This identifier refers to an advanced electronic seal under elDAS.

eu_eidas_aesealqc | This identifier refers to an advanced electronic seal with qualified certificate under elDAS.

za_ecta_aes This identifier refers to an advanced electronic signature defined by the South African ECT Act

za_ecta_oes This identifier refers to an ordinary electronic signature defined by the South African ECT Act

The documentDigests parameter is a JSON array composed of JSON Object composed by the

following parameters:

® hashes

® hashAlgorithmOID
® signature_format
® conformance_level
® signAlgo



® signAlgoParams

® signed_envelope_property

specified according to the following table.

Parameter

hashes

Presence

REQUIRED
Conditional

Value

Array of
String

Description

One or more hash values representing one or more SDRs. This
parameter SHALL contain the Base64-encoded hash(es) of the
documents to be signed.

In case a hashes were provided for the credential authorization, then
the RSSP SHALL verify that each of the hashes in this parameter
corresponds to one of the hashes provided in the credential
authorization.

hashAlgorithmOID

REQUIRED
Conditional

String

Hashing algorithm OID used to calculate document(s) hash(es). This
parameter MAY be omitted or ignored if the hash algorithm is
implicitly specified by the signAlgo algorithm. Only hashing algorithms
as strong or stronger than SHA256 SHALL be used. The hash algorithm
SHOULD follow the recommendations of ETSI TS 119 312 [21].

signature_format

REQUIRED

String

The required signature format:

e “C” SHALL be used to request the creation of a CAdES
signature;

e “X” SHALL be used to request the creation of a XAdES
signature.

e “P” SHALL be used to request the creation of a PAJES
signature.

e “J)” SHALL be used to request the creation of a JAdES
signature.

conformance_level

OPTIONAL

String

The required signature conformance level:

e “Ades-B-B” SHALL be used to request the creation of a a
baseline 191x2 level B signature;

e “Ades-B-T” SHALL be used to request the creation of a a
baseline 191x2 level T signature;

e “Ades-B-LT” SHALL be used to request the creation of a a
baseline 191x2 level LT signature;

e “Ades-B-LTA” SHALL be used to request the creation of a a
baseline 191x2 level LTA signature;

e “Ades-B” SHALL be used to request the creation of a a baseline
etsits level B signature;

e “Ades-T” SHALL be used to request the creation of a a baseline
etsits level T signature;

o “Ades-LT” SHALL be used to request the creation of a a
baseline etsits level LT signature;

o “Ades-LTA” SHALL be used to request the creation of a a
baseline etsits level LTA signature.

The parameter is optional. The default level is AAES-B-B in case it is
omitted. If a timestamp is needed its request and inclusion is
managed by the signing server according to signing server
configuration and policies.

signAlgo

REQUIRED

String

The signAlgo as defined in the Input parameter table in
signatures/signHash. If the parameter hashAlgorithmOID defined in
the documentDigests Object is passed and is in contradiction with the
value of this parameter signAlgo the method SHALL return an error
condition.

signAlgoParams

REQUIRED
Conditional

String

The signAlgoParams as defined in the Input parameter table in

signatures/signHash.




Parameter Presence Value Description

signed_props OPTIONAL | Array of | List of signed attributes. The attributes that may be included depend
attribute | on the signature format and the signature creation policy. The
contents of attribute object are described below.

signed_envelope_property | OPTIONAL | String The required property concerning the signed envelope whose
Conditional possible values depend on the value of the signature_format
parameter.

According to the type of selected signature_format a client
application may specify the following signature properties.

e CAdES
o Detached
o Attached
o Parallel

o Certification
o Revision

o Enveloped
o Enveloping
o Detached

o Detached
o Attached
o Parallel

The default values are the following ones.

e CAdES

o Attached
e PAdES

o Certification
e XAdES

o Enveloped
e JAdES

o Attached

The documents parameter is a JSON array composed of JSON Object composed by the following
parameters:

® document

® signature_format

® conformance_level

® signAlgo

® signAlgoParams

® signed_envelope_property

specified according to the following table.

Parameter Presence Value Description

document REQUIRED< | String base64-encoded document content to be signed.
In case a hashes were provided for the credential authorization, then
the RSSP SHALL verify that the hash of the document in this
parameter corresponds to one of the hashes provided in the
credential authorization.




Parameter

signature_format

Presence

REQUIRED

Value

String

Description
The required signature format:

e “C” SHALL be used to request the creation of a CAdES
signature;

e “X” SHALL be used to request the creation of a XAdES
signature.

e “P” SHALL be used to request the creation of a PAJES
signature.

e “)” SHALL be used to request the creation of a JAdES
signature.

conformance_level

OPTIONAL

String

The required signature conformance level:

e “Ades-B-B” SHALL be used to request the creation of a a
baseline 191x2 level B signature;

o “Ades-B-T” SHALL be used to request the creation of a a
baseline 191x2 level T signature;

o “Ades-B-LT” SHALL be used to request the creation of a a
baseline 191x2 level LT signature;

e “Ades-B-LTA” SHALL be used to request the creation of a a
baseline 191x2 level LTA signature;

e “Ades-B” SHALL be used to request the creation of a a
baseline etsits level B signature;

e “Ades-T” SHALL be used to request the creation of a a
baseline etsits level T signature;

o “Ades-LT” SHALL be used to request the creation of a a
baseline etsits level LT signature;

e “Ades-LTA” SHALL be used to request the creation of a a
baseline etsits level LTA signature.

The parameter is optional. The default level is AAES-B-B in case it is
omitted. If a timestamp is needed its request and inclusion is
managed by the signing server according to signing server
configuration and policies.

signAlgo

REQUIRED

String

The signAlgo as defined in the Input parameter table in
signatures/signHash. If the parameter hashAlgorithmOID defined in
the documentDigests Object is passed and is in contradiction with the
value of this parameter signAlgo the method SHALL return an error
condition.

signAlgoParams

REQUIRED
Conditional

String

The signAlgoParams as defined in the Input parameter table in

signatures/signHash.

signed_props

OPTIONAL

Array of
attribute

List of signed attributes. The attributes that may be included depend
on the signature format and the signature creation policy. The
contents of attribute object are described below.




Parameter

signed_envelope_property

Presence

OPTIONAL
Conditional

Value

String

Description

The required property concerning the signed envelope whose
possible values depend on the value of the signature_format

parameter.
According to the type of selected signature_format a client
application may specify the following signature properties.

e CAdES
o Detached
o Attached
o Parallel

o Certification
o Revision

o Enveloped
o Enveloping
o Detached

o Detached

o Attached
o Parallel

The defaul values are the following ones.

e CAdES

o Attached
e PAdES

o Certification
e XAdES

o Enveloped
e JAdES

o Attached

The ‘attribute’ is a JSON Object composed by the following attributes:

® attribute_name
® attribute_value

specified according to the following table.

Parameter

attribute_name

Presence

REQUIRED

Value

String

Description

Name or OID of the attribute/property to be included in the signature. Below the
table a list of the attributes/properties names that can be referenced in this
component in order to request the inclusion of the corresponding signed
attributes/properties in the signature. Other attributes and/or properties whose
names are defined in the table in clause 6.3 of ETSI EN 319 122-1 [29], ETSI EN 319
132-1[30], ETSI EN 319 142-1 [31], ETSI TS 119 182-1 [32] documents may be
supported by the signing server.

attribute_value

REQUIRED
Conditional

String

Depending on the attribute/property specified in the attribute_name parameter,
this parameter contains the value to be used for such attribute/property to be
included in the signature. When some element of this parameter is not defined the
signing server SHALL calculate it, if needed.

As an alternative to the attributes/properties names listed in the table below it is also possible using
the corresponding attributes/properties oids.

attribute_name

attribute_value



attribute_name attribute_value

commitment-type-indication

This parameter contains the Base64-encoding of the attribute commitment-type-
indication defined in clause 5.2.3 of ETSI EN 319 122-1 [29].

content-hints

This parameter contains the Base64-encoding of the attribute content-hints defined in
clause 5.2.4.1 of ETSI EN 319 122-1 [29].

mime-type

This parameter contains the Base64-encoding of the attribute mime-type defined in
clause 5.4.2.2 of ETSI EN 319 122-1 [29].

signer-location

This parameter contains the Base64-encoding of the attribute signer-location defined
in clause 5.2.5 of ETSI EN 319 122-1 [29].

content-time-stamp

This parameter contains the Base64-encoding of the attribute content-time-stamp
defined in clause 5.2.8 of ETSI EN 319 122-1 [29].

signer-attributes-v2

This parameter contains the Base64-encoding of the attribute signer-attributes-v2
defined in clause 5.2.6.1 of ETSI EN 319 122-1 [29].

signature-policy-identifier

This parameter contains the Base64-encoding of the attribute signature-policy-
identifier defined in clause 5.2.9.1 of ETSI EN 319 122-1 [29].

conten t—reference

This parameter contains the Base64-encoding of the attribute content-reference
defined in clause 5.2.11 of ETSI EN 319 122-1 [29].

content-identifier

This parameter contains the Base64-encoding of the attribute content-identifier
defined in clause 5.2.12 of ETSI EN 319 122-1 [29].

Location This parameter contains the Base64-encoding of the attribute Location defined in
clause 5.3 of ETSI EN 319 142-1 [31].

Reason This parameter contains the Base64-encoding of the attribute Reason defined in clause
5.3 of ETSI EN 319 142-1 [31].

Name This parameter contains the Base64-encoding of the attribute Name defined in clause
5.3 of ETSI EN 319 142-1 [31].

Contactinfo This parameter contains the Base64-encoding of the attribute Contactinfo defined in
clause 5.3 of ETSI EN 319 142-1 [31].

SignerRoleV2 This parameter contains the Base64-encoding of the attribute SignerRoleV2 defined in

clause 5.2.6 of ETSI EN 319 132-1 [30].

CommitmentTypelndication

This parameter contains the Base64-encoding of the attribute
CommitmentTypelndication defined in clause 5.2.3 of ETSI EN 319 132-1 [30].

SignatureProductionPlaceV2

This parameter contains the Base64-encoding of the attribute
SignatureProductionPlaceV2 defined in clause 5.2.5 of ETSI EN 319 132-1 [30].

AllDataObjectsTimeStamp

This parameter contains the Base64-encoding of the attribute
AllDataObjectsTimeStamp defined in clause 5.2.8.1 of ETSI EN 319 132-1 [30].

IndividualDataObjectsTimeStamp

This parameter contains the Base64-encoding of the attribute
IndividualDataObjectsTimeStamp defined in clause 5.2.8.2 of ETSI EN 319 132-1 [30].

SignaturePolicyldentifier

This parameter contains the Base64-encoding of the attribute SignaturePolicyldentifier
defined in clause 5.2.9 of ETSI EN 319 132-1 [30].

Output

This method returns the following values using the “application/json” format:

Parameter Presence  Value Description
DocumentWithSignature | REQUIRED | Array | One or more Base64-encoded signatures enveloped within the
Conditional | of documents. This element SHALL carry a value only if the client application
String | requested the creation of signature(s) enveloped within the signed
document(s) and when operationMode is not “A”.
SignatureObject REQUIRED |Array |One or more Base64-encoded signatures detached from the documents.
Conditional | of This element SHALL carry a value only if the client application requested
String | the creation of detached signature(s) and when operationMode is not “A”.




Parameter Presence  Value Description

responselD REQUIRED | String | The responselD as defined in the Output attribute table in

Conditional signatures/signHash.
validationinfo REQUIRED |JSON | The validationinfo is a JSON Object containing validation data that SHALL

Conditional | Object | be included in the signing response if requested using the input
parameter “returnValidationInfo”.

The validationInfo is a JSON Object composed by the following parameters:

® ocsp
* crl
® certificates

specified according to the following table.

Parameter Presence  Value Description

ocsp REQUIRED | Array | ocsp is an array of base64 encoded strings containing the DER-encoded ASN.1 data
Conditional | of structures of type 0cSPResponse according to RFC 6960 [33]. This value SHALL be
String | included if at least one OCSP response is needed to validate the created signature and
timestamps contained in the signature. It SHALL contain all needed OCSP responses. If
for the same certificate an OCSP response and a CRL is available, the OCSP response
SHOULD be included.

crl REQUIRED | Array | crlis an array of base64 encoded strings containing the DER-encoded ASN.1 data
Conditional | of structures of type CertificateList according to RFC 5280 [8]. This value SHALL be
String | included if at least one CRL is needed to validate the created signature and timestamps
contained in the signature. It SHALL contain all needed CRLs.

certificates | REQUIRED | Array | certificates contains one or more Base64-encoded X.509v3 certificates from the
Conditional | of certificate chain used to create the respective signature and timestamps included in the
String | signature. This value SHALL be included if at least one certificate is needed to validate
the created signature and timestamps, which is not yet included in the signature. It
SHALL contain all needed certificates.

Error Case Status Error Error Description
Code

The authorization header does not match the pattern | 400 invalid_request | Malformed authorization header.

“Bearer [sessionKey]” (bad
request)

Missing or not String “SAD” parameter 400 invalid_request | Missing (or invalid type) string
(bad parameter SAD
request)

Invalid “SAD” parameter 400 invalid_request | Invalid parameter SAD
(bad
request)

Missing or not String “credentiallD” parameter 400 invalid_request | Missing (or invalid type) string
(bad parameter credentiallD
request)

Invalid “credentiallD” parameter 400 invalid_request | Invalid parameter credentiallD
(bad
request)

When present, invalid object “documentDigests” 400 invalid_request | Invalid object parameter

parameter (bad documentDigests
request)

When present, invalid array “documents” parameter 400 invalid_request | Invalid array parameter documents
(bad
request)




Error Case Status  Error Error Description
Code
Empty documentDigests and documents parameters 400 invalid_request | Empty documentDigests and
(bad documents objects
request)
Both documentDigests and documents parameters 400 invalid_request | Both documentDigests and
have been passed (bad documents parameters passed
request)
Invalid Base64 hashes element 400 invalid_request | Invalid Base64 hashes string
(bad parameter
request)
Invalid Base64 documents element 400 invalid_request | Invalid Base64 documents string
(bad parameter
request)
Unauthorized documentDigests or documents 400 invalid_request | documentDigests or documents are
(bad not authorized by the SAD.
request)
Missing or not String “signAlgo” parameter 400 invalid_request | Missing (or invalid type) string
(bad parameter signAlgo
request)
Missing or not String “signAlgoParams” parameter 400 invalid_request | Missing (or invalid type) string
(bad parameter signAlgoParams
request)
“hashAlgorithmOID” parameter contradicting with 400 invalid_request | String parameter hashAlgorithmOID
“signAlgo” parameter (bad contradicts with signAlgo parameter
request)
When present, invalid “hashAlgorithmOID” parameter | 400 invalid_request | Invalid parameter hashAlgorithmOID
(bad
request)
Invalid “signAlgo” parameter 400 invalid_request | Invalid parameter signAlgo
(bad
request)
When present, invalid “signature_format” parameter | 400 invalid_request | Invalid parameter signature_format
(bad
request)
When “documents” is passed, missing or not String 400 invalid_request | Missing (or invalid type) string
“signature_format” parameter (bad parameter signature_format
request)
When present, invalid “conformance_level” parameter | 400 invalid_request | Invalid parameter conformance_level
(bad
request)
When present, invalid “signed_envelope_property” 400 invalid_request | Invalid parameter
parameter (bad signed_envelope_property
request)
When present, invalid “signed_props” parameter 400 invalid_request | Invalid parameter signed_props (list
(bad of invalid attributes)
request)
When present, invalid “operationMode” parameter 400 invalid_request | Invalid parameter operationMode
(bad
request)
When present, invalid “validity_period” parameter 400 invalid_request | Invalid parameter validity_period
(bad

request)




Error Case Status Error Description

Code
When present, out of bounds “validity_period” 400 invalid_request | Out of bounds parameter
parameter (bad validity_period
request)
When present, invalid “response_uri” parameter 400 invalid_request | Invalid parameter response_ur
(bad
request)
When present, invalid “clientData” format (not string) | 400 invalid_request | Invalid parameter clientData
(bad
request)
Invalid “hashes” element length 400 invalid_request | Invalid digest value length
(bad
request)
Expired “SAD” 400 invalid_request | SAD expired
(bad
request)
Expired credential 400 invalid_request | Signing certificate ‘O=
(bad [organization],CN=[common_name]’
request) is expired.
Document or documentDigest to be signed does not 403 invalid_hash Document or documentDigest does
match one of the authorized hashes (bad not match authroized hash
request)

Sample Request

POST /csc/v2/signatures/signDoc HTTP/1.1 Host: service.domain.org
Content-Type: application/json
Authorization: Bearer 4/CKN69L8gdSYp5_ pwH3X1FQZ3ndFhkXf9P2_TiHRG-bA
{
"credentialID": "GX0112348",
"SAD": " TiHRG-bAH3X1FQZ3ndFhkXf9P24/CKN69L8gdSYp5 pw",
"documentDigests": [
{
"hashes": "sTOgwOm+474gFj0qox1iSNspKgbcse4IeiqlDg/HWuI=",
"hashAlgorithmOID": "2.16.840.1.101.3.4.2.1",

"signature_format": "P",
"conformance_level": "AdES-B-T",
"signAlgo": "1.2.840.113549.1.1.1"

}s

{
"hashes": "HZQzZmMAIWekfGHO/ZKW1lnsdt@xg3H6bZYztgsMTLwO=",
"hashAlgorithmOID": "2.16.840.1.101.3.4.2.1",
"signature_format": "C",
"conformance_level": "AdES-B-B",
"signAlgo": "1.2.840.113549.1.1.1"

}

1,
"documents": [

{
"document": "Q2VydG1lmaWNhdGVTZXIpYWxOdW1iZ..KzBTWWVIWWZZVXptU3V5MVU9DQo=",
"signature_format": "P",
"conformance_level": "AdES-B-T",
"signAlgo": "1.2.840.113549.1.1.1"

}s

{
"document": "Q2VydGlmaWNhdGVTZXJIpYWxO0dW1iZXI7U3.. emNNbUNiL1cyQT@9DQo=",
"signature_format": "C",
"conformance_level": "AdES-B-B",

"signed_envelope_property": "Attached",




"signAlgo": "1.2.840.113549.1.1.1"
}
1,

"clientData": "12345678"

cURL example

curl -X POST
-H "Content-Type: application/json"
-H "Authorization: Bearer 4/CKN69L8gdSYp5_pwH3X1FQZ3ndFhkXf9P2_TiHRG-bA"

-d '{
"credentialID": "GX©112348",
"SAD": "_TiHRG-bAH3X1FQZ3ndFhkXf9P24/CKN69L8gdSYp5_ pw",
"documentDigests": [
{
"hashes": "sTOgwOm+474gFj0qox1iSNspKgbcse4IeiqlDg/HWuI=",
"hashAlgorithmOID": "2.16.840.1.101.3.4.2.1",
"signature_format": "P",
"conformance_level": "AdES-B-T",
"signAlgo": "1.2.840.113549.1.1.1"
s
{
"hashes": "HZQzZmMAIWekfGHO/ZKW1lnsdtOxg3H6bZYztgsMTLwO=",
"hashAlgorithmOID": "2.16.840.1.101.3.4.2.1",
"signature_format": "C",
"conformance_level": "AdES-B-B",
"signAlgo": "1.2.840.113549.1.1.1"
}
1,
"documents": [
{
"document"”: "Q2VydGlmaWNhdGVTZXIpYWxOdW1iZ..KzBTWWVIWWZZVXptU3V5MVUSDQo=",
"signature_format": "P",
"conformance_level": "AdES-B-T",
"signAlgo": "1.2.840.113549.1.1.1"
s
{
"document": "Q2VydGlmaWNhdGVTZXJIpYWxOdW1iZXI7U3.. emNNbUNiL1cyQTO9DQo=",
"signature_format": "C",
"conformance_level": "AdES-B-B",
"signed_envelope_property": "Attached",
"signAlgo": "1.2.840.113549.1.1.1"
}
1,

"clientData": "12345678"
} 1]

https://service.domain.org/csc/v2/signatures/signDoc
Sample Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
{
"DocumentWithSignature":
[
"MILuLgYJKoZIhvcNAQcCoILuHz.. ehEeR5ZRi5+WV5T1Fp0O”,
"MIL4IAYJKoZIhvcNAQcCoIL4..YavvBxkVwI3dFDOKbCilgW3TxTI="
1,
"SignatureObject":
[
"MIAGCSqAMIACAQExDzANBglghkgBZQMEAEEFADCABgkghkiG..Ss4rEsQVAAAAAAAAAA=="
"MIAGCSqGSIb3DQEHAqCAMIACAQEXDzANBglghkgBZQMEghki..W7pP1ZJFKUF2YAAAAAAA™



Sample Request

POST /csc/v2/signatures/signDoc HTTP/1.1 Host: service.domain.org

Content-Type: application/json
Authorization: Bearer 4/CKN69L8gdSYp5_pwH3X1FQZ3ndFhkXf9P2_TiHRG-bA

{
"signatureQualifier": "eu_eidas_ges",
"SAD": "_TiHRG-bAH3X1FQZ3ndFhkXf9P24/CKN69L8gdSYp5 pw",
"documentDigests": [

{
"hashes": "sTOgwOm+474gFjoqox1iSNspKgbcse4IeiqlDg/HWuI=",

"hashAlgorithmOID": "2.16.840.1.101.3.4.2.1",
"signature_format": "P",

"conformance_level": "AdES-B-T",

"signAlgo": "1.2.840.113549.1.1.1"

}
1,
"clientData": "12345678",
"returnValidationInfo":true

cURL example

curl -X POST
-H "Content-Type: application/json"
-H "Authorization: Bearer 4/CKN69L8gdSYp5_pwH3X1FQZ3ndFhkXf9P2_TiHRG-bA"

-d '{
"signatureQualifier": "eu_eidas_ges",
"SAD": "_TiHRG-bAH3X1FQZ3ndFhkXf9P24/CKN69L8gdSYp5_ pw",
"documentDigests": [
{

"hashes": "sTOgwOm+474gFj0qox1iSNspKgbcse4IeiqlDg/HWuI=",
"hashAlgorithmOID": "2.16.840.1.101.3.4.2.1",
"signature_format": "P",
"conformance_level": "AdES-B-T",
"signAlgo": "1.2.840.113549.1.1.1"
} L
"clientData": "12345678",
"returnValidationInfo":true}’
https://service.domain.org/csc/v2/signatures/signDoc

Sample Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8

{
"SignatureObject":

[
"MIAGCSGAMIACAQEXDZANBglghkgBZQMEAGEFADCABgkghkiG..Ss4rESQVAAAAAAAAAA==",
"MIAGCSqGSIb3DQEHAqCAMIACAQEXDZANBglghkgBZQMEqhKi..W7pP1ZIFKUF 2YAAAAAAA"

1,
"validationInfo":{
"ocsp":[
"MIIJg...jSc="
1,
"crl": [
"MIIC4...X7M="

"certificates":[



"<Base64-encoded_X.509 certificate>"

Sample Request

POST /csc/v2/signatures/signDoc HTTP/1.1 Host: service.domain.org
Content-Type: application/json
Authorization: Bearer 6/CKN69L8gdSYp5_pwH3X1FQZ3ndFhkXf9P2_TiHRG-bA
{

"signatureQualifier": "ges_eidas",

"documentDigests":

{

"hashes":

[
"sTOgwOm+474gFj0qox1iSNspKgbcse4IeiqlDg/HWuI=",

"HZQzZmMAIWekfGHO/ZKW1lnsdtOxg3H6bZYztgsMTLwO="

1,

"hashAlgorithmOID": "2.16.840.1.101.3.4.2.1"
¥
" signature_format": "P",
" conformance_level": "AdES-B-T",

"signAlgo": "1.2.840.113549.1.1.1",
"clientData": "12345678"

cURL example

curl -X POST
-H "Content-Type: application/json"
-H "Authorization: Bearer 6/CKN69L8gdSYp5_pwH3X1FQZ3ndFhkXf9P2_TiHRG-bA"
-d '{ "signatureQualifier": "ges_eidas",
"documentDigests":
{

"hashes":

[
"sTOgwOm+474gFjoqox1iSNspKgbcse4IeiqlDg/HWuI=",

"HZQzZmMAIWekfGHO/ZKW1lnsdtOxg3H6bZYztgsMTLwO="

1,

"hashAlgorithmOID": "2.16.840.1.101.3.4.2.1"
¥
" signature_format": "P",
" conformance_level": "AdES-B-T",

"signAlgo": "1.2.840.113549.1.1.1",
"clientData": "12345678"}"
https://service.domain.org/csc/v2/signatures/signDoc

Sample Response

HTTP/1.1 200 0K
Content-Type: application/json;charset=UTF-8

{
"SignatureObject":
[
"MIAGCSQAMIACAQEXDzANBglghkgBZQMEAgEFADCABgkghkiG..SSArESQVAAAAAAAAAA==",
"MIAGCSqGSIb3DQEHAGCAMIACAQEXDzANBglghkgBZQMEghki..W7pP1ZIFKUF2YAAAAAAA"
]
}

11.12 signatures/signPolling



Description

Request to the server to return the responses corresponding to previously sent (initial) digital
signature value(s) or signature(s) creation request when processed in asynchronous mode.

If the user is authenticated directly by the RSSP then the user/D is implicit and SHALL NOT be

specified.

Input

This method allows the following parameters:

Parameter Presence

Value Description

request/ID | REQUIRED | String | The value generated by the server uniquely identifying the response originated from the
server itself to a previous asynchronous signature request.
userlD REQUIRED | String | The userID as defined in the Input parameter table in credentials/list.
Conditional
clientData | OPTIONAL | String | The clientData as defined in the Input parameter table in oauth2/authorize.
Output

This method returns the following values using the “application/json” format:

Parameter Presence  Value Description
signatures REQUIRED | Array | The signatures as defined in the Output attribute table in
Conditional | of signatures/signHash. This element SHALL carry a value only if the client
String | application requested the creation of digital signature value(s). This value
SHALL be returned when the requested digital signature(s) creation has
been completed.
DocumentWithSignature | REQUIRED | Array | The DocumentWithSignature as defined in the Output attribute table in
Conditional | of signatures/signDoc. This value SHALL be returned when the requested
String | signature(s) creation has been completed.
SignatureObject REQUIRED | Array | The SignatureObject as defined in the Output attribute table in
Conditional | of signatures/signDoc. This value SHALL be returned when the requested
String | signature(s) creation has been completed.
Error Case Status Error Error Description
Code
The previous asynchronous signature | 202 accepted_request | The previous asynchronous signature request has
request has been accepted for (accepted) been accepted for processing, but the processing
processing has not yet been completed.
The authorization header does not 400 invalid_request Malformed authorization header.
match the pattern “Bearer (bad
[sessionKey]” request)
Missing or not String “requestID” 400 invalid_request Missing (or invalid type) string parameter
Parameter (bad requestID
request)
Invalid requestID parameter 400 invalid_request Invalid parameter requestID
(bad
request)
Not empty “userID” parameter in case | 400 invalid_request userID parameter SHALL be null
of user- specific authorization (bad
request)




Error Case Status Error Error Description

Code
Invalid “userID” format in case of no 400 invalid_request Invalid parameter “user|D”
user-specific authorization (bad

request)
When present, invalid “clientData” 400 invalid_request Invalid parameter clientData
format (not string) (bad

request)

Sample Request

POST /csc/v2/signatures/signPolling HTTP/1.1

Host: service.domain.org

Content-Type: application/json

Authorization: Bearer 4/CKN69L8gdSYp5_ pwH3X1FQZ3ndFhkXf9P2_TiHRG-bA

{
"requestID":"158112-652341-khj",
"clientData":"12345678"
}
cURL example
curl -X POST

-H "Content-Type: application/json”
-H "Authorization: Bearer 4/CKN69L8gdSYp5_pwH3X1FQZ3ndFhkXf9P2_TiHRG-bA"
-d '{ "requestID":"158112-652341-khj",

"clientData": "12345678" }'
https://service.domain.org/csc/v2/signatures/signPolling

Sample Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8

{

"signatures":

[
"KedJuTob5gtvYx9qM3k3gm7kbLBwVbEQR126S2tmXjgNND7MRGtoew==",
"Idhef7xzgtvYx9gqM3k3gm7kbLBwVbE98239S2tm8hUh85KKsfdowel=="

11.13 signatures/timestamp
Description

Generate a time-stamp token for the input hash value. The time-stamp token can be generated
directly by the RSSP or by a Time Stamping Authority connected to it.

The reason to implement this method instead of providing time-stamp services through widespread
RFC 3161 [2] protocols directly is to facilitate the creation of long-term validation digital signatures
and to support billing operations. In both cases, the RSSP provider can offer pre-configured time-
stamp services instead of requiring the signature application to obtain time-stamp services from a
different provider.



Input

This method allows the following parameters:

Parameter Presence Value Description

hash REQUIRED | String | The Base64-encoded hash value to be time stamped. The remote service SHALL use this
value to encode the value of Messagelmprint.hashedMessage as defined in RFC 3161 [2].

hashAlgo | REQUIRED | String | The OID of the algorithm used to calculate the hash value. The remote service SHALL use
this value to encode the value of Messagelmprint.hashAlgorithm as defined in RFC 3161
[2].

nonce OPTIONAL | String | A large random number with a high probability that it is generated by the signature
application only once. The value SHALL be represented as hex-encoded string.

clientData | OPTIONAL | String | The clientData as defined in the Input parameter table in cauth2/authorize.

Note 34: RFC 3161 [2] contains more detailed definitions of time stamp parameters that can be used
in the context of this specification.

Output

This method returns the following values using the “application/json” format:

Value

Parameter Presence

Description

timestamp | REQUIRED | String | The Base64-encoded time-stamp token as defined in RFC 3161 [2] as updated by RFC 5816

[10]. If the nonce parameter is included in the request then it SHALL also be included in
the time-stamp token, otherwise the response SHALL be rejected.

Error Case Status Error Error Description
Code

The authorization header does not match the pattern 400 invalid_request | Malformed authorization

“Bearer [sessionKey]” (bad header.
request)

The“hash” parameter is missing or not of type String. 400 invalid_request | Missing (or invalid type) string
(bad parameter hash
request)

Empty hash parameter 400 invalid_request | Empty hash parameter
(bad
request)

Invalid “hash” length 400 invalid_request | Invalid digest value length
(bad
request)

Invalid Base64 hash element 400 invalid_request | Invalid Base64 hash string
(bad parameter
request)

Invalid “hashAlgo” parameter 400 invalid_request | Invalid parameter hashAlgo
(bad
request)

Invalid or non-numeric “nonce” parameter 400 invalid_request | Invalid parameter nonce
(bad
request)

Sample Request

POST /csc/v2/signatures/timestamp HTTP/1.1
Host: service.domain.org



Content-Type: application/json
Authorization: Bearer 4/CKN69L8gdSYp5_pwH3X1FQZ3ndFhkXf9P2_TiHRG-bA

{
"hash" :"sTOgwOm+474gFj0qOx1iSNspKgbcse4IeiqlDg/HWuI=",
"hashAlgo":"2.16.840.1.101.3.4.2.1",
"clientData":"12345678"

}

cURL example

curl -X POST
-H "Content-Type: application/json"
-H "Authorization: Bearer 4/CKN69L8gdSYp5_pwH3X1FQZ3ndFhkXf9P2_TiHRG-bA"
-d "{ "hash": "sTOgwOm+474gFj0qox1iSNspKgbcse4IeiqlDg/HWuI=",
"hashAlgo": "2.16.840.1.101.3.4.2.1",
"clientData": "12345678" }'
https://service.domain.org/csc/v2/signatures/timestamp

Sample Response

HTTP/1.1 200 0K
Content-Type: application/json;charset=UTF-8

{

"timestamp" : "MGWCAQEGCSSGAQQB7U8CATAXMAOGCWCGSAF1AWQCAQUABCCrCqnrjHOVXxXyQQLlfnFIRx1jjrviTs
7/GjKghr2AmluQIIVs5D80UB4p4YDz IWMTQXMTESMTEZMIM5WjADAgEBAgkANWN2SSTWIXKk="

}

12 JSON schema and OpenAPI description

A signature application may want to validate the JSON objects described in this specification, to
ensure that required properties are present and that additional constraints are met. Validation of
JSON data is typically performed by means of a specific JSON Schema.

A JSON Schema is a grammar language for defining the structure, content, and semantics of JSON
data objects. It can specify metadata about the meaning of an object’s properties and values that are
valid for those properties. The JSON Schema is defined at https://json-schema.org.

The JSON schema of the API specification described in this specification is available from the website
of the Cloud Signature Consortium at:
https://cloudsignatureconsortium.org/resources/download-api-specifications/.

The JSON Schema file contains the definition of all CSC APl parameters and the definition of the
input and output objects managed by the CSC API. The following objects are defined:

* input-info: input object for info method

e output-info: output object for info method

* input-auth-login: input object for auth/login method

* output-auth-login: output object for auth/login method

* input-auth-revoke: input object for auth/revoke method


https://json-schema.org/
https://cloudsignatureconsortium.org/resources/download-api-specifications/

* nput-credentials-list: input object for credentials/list method

* output-credentials-list: output object for credentials/list method

* input-credentials-info: input object for credentials/info method

* output-credentials-info: output object for credentials/info method

* input-credentials-authorize: input object for credentials/authorize method

* output-credentials-authorize: output object for credentials/authorize method

* input-credentials-extendTransaction: input object for credentials/extendTransaction method

* output-credentials-extendTransaction: output object for credentials/extendTransaction
method

* input-credentials-sendOTP: input object for credentials/sendOTP method

* nput-signatures-signhash: input object for signatures/signhash method

* output-signatures-signhash: output object for signatures/signhash method

* input-signatures-timestamp: input object for signatures/timestamp method

* output-signatures-timestamp: output object for signatures/timestamp method

In addition, an OpenAPI 3.0 description file is provided, as defined by the OpenAPI Initiative (OAl)
https://www.openapis.org, containing these JSON Schema definitions together with other
information to fully describe the CSC API protocol. The OpenAPI file contains:

1. A general information about the protocol like, for example, the APIs version, the Cloud
Signature Consortium contact information and the license;

2. Information about the RESTful path URL and an example of server URL access points;
3. Authorization schemas required to access the CSC API;

4. A description of every method of the CSC protocol including input objects and returned HTTP
responses.

The OpenAPI description file can also be used by developers or testers to automatically generate a
CSC compliant server interfaces or client stubs.

13 Interaction among elements and components

The building blocks of a remote signature solution interact with the APl methods described in this
specification. The following sections describe the sequence diagrams of some of the most common
operations required to obtain a service authorization, credential authorization and to request a
remote signature.

Note 35: The sample requests and responses that are provided in the diagrams are only a partial
representation of complete transactions and are aimed at showing the most important


https://www.openapis.org/

parameters and information. See the example in the previous sections of this specification for
complete and detailed descriptions.

13.1 Remote signing service authorization using Basic
Authentication

|User| |Signature Application| |Remote Service|

Login information
Username/Password

Request service authorization
POST auth/login
Authorization: Basic ...

User authorizes
access

Return access token
{"access_token":"4/CKN69L8gdSYp5hA"}

Use token to access
protected resources

Close session

Revoke access token
POST auth/revoke
{"token":"4/CKN6ILEGAS Yp5bA"}

Token revoked
(OK)

Session
is closed

13.2 Remote signing service authorization using OAuth2 with
Authorization Code flow



|User| |Signature Application Authorization Service | | Remote Service
s

Request authorization code

hitps:/Avww.domain.com/oauth2!
authorize?scope=service&
redirect_uri=...

Login and consent
Username/Password

User authorizes
access

Return authorization code
[redirect_urij?code=FhkXfIP269L8y

Exchange code for access token
POST oauth2/token
grant_type=authorization_code&
code=FhkXf9P269L8g

Return access token
{"access_token":"4/CKN69L8gdSYp5bA"}

‘ ‘ Use token to access protected resburces

Close session

Revoke access token
POST oauth2/revoke
token=4/CKN69L8gdSYp5bA

Token revoked
(OK)

Session
is closed

13.3 Create a remote signature with a credential protected by a
PIN

|User| |Signature Application|

iSign document
' PIN

Credential authorization

POST credentials/authorize
{"credentialld"."GX0112348",
"authData":[{"id":"PIN", "value":"12345678"}]}

User authorizes
credential

Return SAD
{"SAD":"TiIHRG-bAH3X1FQZ3ndFhXfL8gd"}

Request signature

POST signatures/signHash |
{"hash":["8ck9u/eL ZXvbgpxKLX+rFftEzhy6 MF611JCIUKg020="], |
"SAD": "TiHRG-bAH3X1FQZ3ndFhXfL8gd"} |

Return signature
{"signatures”:["MTIzNDU2Nzg5MDEyMzQ1Ng=="]}

| Signed document

13.4 Create a remote signature with a credential protected by an
“online” OTP (based on SMS)



|User| |Signature Application

iSign document

Request OTP
POST credentials/getChallenge
{"credentialld":"GX0112348" "authObjectld":."OTP"}

" Return OTP online'
| {SMS} "Please enter this code to
\_authorize your signature: 947012"

'Enter OTP §
| OTP i

Credential authorization

POST credentials/authorize
{"credentialld":"GX0112348",
"authData".[{"id": "OTP", "value": "947012")[}

User authorizes
credential

Return SAD
{"SAD"-"TiIHRG-bAH3X1FQZ3ndFhXfL8gd"}

Request signature

POST signatures/signHash |
{"hash":["8ck9u/eL ZXvbgpxKLX+rFREzhy6 MF6 11JCHIUKq020="], |
"SAD": "TiHRG-bAH3X1FQZ3ndFhXfL8gd"} |

Return signature
{"signatures”:["MTIzNDU2Nzg5MDEyMzQ1Ng=="]}

Sighed document

13.5 Create a remote signature with a credential protected by a
mobile app

|User| |Signature Application|

iSign document

Credential authorization
POST credentials/authorize
{"credentialld":"GX0112348",

! "authData":[{"id":"mobile"}]}

Indicate process is ongoing
{"handle":"878287f37h2bv293bv2bv237bv297bvbv"}

loop J " [while pracess is ongoing]
Check authorization status
POST credentials/authorizeCheck
{"handle":"878287137b2bv293bv2bv237bv297bvbv")}

; Indicate process is ongoing
i {"handle": "878287f37b2bv293bv2bv237bv297bvbv"}

' Return authorization request
' [Push notification] "Please authorize your signature request”

'Authorize credentig
: Authorization mechanisin

User authorizes
credential

Check authorization status
POST credentials/authorizeCheck
{"handle":"878287137h2bv293bv2bv237bv297bvbv")}

Return SAD
{"SAD":"TiIHRG-bAH3X1FQZ3ndFhXfL8gd"}

Request signature

POST signatures/signHash !
{"hash":["8ck9u/eL ZXvbgpxKLX+rFftEzhy6 MF611JCIUKg020="], |
"SAD": "TIHRG-bAH3X1FQZ3ndFhXfL8gd"} :

! Return signature
| {"signatures”:["MTIzNDU2Nzg5MDEyMzQ1Ng=="]}

! Sighed document



13.6 Create a remote signature with a credential protected by a
PIN and an “online” OTP (based on SMS)

|User| |S|gnature Appllcat|on|

Slgn document

LPIN !

Request OTP
POST credentials/getChallenge
{"credentialld":"GX0112348", "authObjectld":"OTP"}

} Return OTP online!
{SMS} "Please enter this code to
1 authorize your Signafure 947012"

Enter oTP

LoTP 3
3—)‘-

Credential authorization

POST credentials/authorize

{"credentialld":"GX0112348", i
"authDafa":[{"id":"PIN", "value":"12345678"} {"id": "OTP", "value": "947012"}]}

. [aS
User authorizes
credential

Return SAD
{"SAD":"TIHRG-bAH3X1FQZ3ndFhXfL8gd"}

Request signature

POST signatures/signHash
{"hash":["8ck9u/eLZXvbgpxKLX+rFftEzhy6MF611JCflUKq020="],
"SAD": "TIHRG-bAH3X1FQZ3ndFhXfL8gd"}

Return signature
{"signatures":["MTIzNDU2Nzg5MDEyMzQ1Ng=="]}

f Signed document

13.7 Create a remote signature with a credential protected by
OAuth2 with Authorization Code flow

|User| |S|gnature Appllcat|0n| |Authorization Service| |Remote Service|

Slgn document

Request authorization code
https:/iwww.domain.com/oauth2/
authorize?scope=credential &
redirect_uri=...

Authorize credentiél
. Authorization mechanism

User authorizes
credential

Return authorization code
[redirect_uri]?code=JKWwp901hBcK348/

Exchange code for SAD
POST oauth2/token
grant_type=authorization_code&
code=JKWwp901hBcK3481

Return SAD
{"SAD"-"TiIHRG-bAH3X1FQZ3ndFhXfL8gd"}

Request signature

POST signatures/signHash 1

{"hash":["8ck9u/eLZXvhgpxKLX+rFftEzh yGMF(a‘ 1JCIUKq020="],
"SAD": "TiHRG-bAH3X1FQZ3ndFhXfL8gd"} .

Return signature
{"signatures":["MTIzNDU2NzgSMDEyMzQ1 Ng ="]}

Signed document



13.8 Create a remote signature with credential and signature
qualifier with OAuth2 Authorization Code flow

Signature Application lAuthorization Serverl IRemote Servicel

iSign document —‘
: Request authorization code :
i i P >_typ & ial&si ier=qes_eidasé&..._ |

| Login and Consent

| Return authorization code
| _ code=HSInaJKWwp901hBeK348IUHiuH8374

Exchange code for access token

POST /token !
code=HS9naJKWwp901hBcK348IUHiuH83748. i

Return access token
{"access_token"=4/CKN69L8gdSYp5_.... ...}

Request Signature(s)

POST /signDoc

{"SAD"="4/CKN69L8gdSYp5._...", '
"signatureQualifier'="qes_eidas", \
"documentDigests":

{"hashes":["s TOgwOm+474gFj0q0x1iSNspKgbcsedleigiDg/HWul="]), ...}

Return Signature(s) !
{SignatureObject:["MIAGCSqAMIACAQEXDzA QMEAgEFADCA iG,..SSArEsQVAAAAAAAAA A=="}

' Signed document

13.9 Create a remote signature with OAuth2 Authorization Code
flow and Pushed and Rich Authorization Request

Signature Application Authorization Server
iSign document

‘ Pushed authorization request
| /POST pushed_authorize

| response_typ: ion_details=
| Return request URI
| {"request_uri"="urn.example:bwc4JK-...", ...}

' Request authorization code
| /authorize?request_uri=urn:example:bwc4JK-...8..

Login and Consen{

| Return authorization code
| code=HS9naJKWwp901hBeK348IUHiuHE374

Exchange code for access token

POST /token
code=HS9naJKWwp901hBcK348IUHiuH83748.

Return access token
{"access_token"=4/CKN69L8gdSYp5 ..., ...}

Request Signature(s)

POST /signDoc
{"SAD"="4/CKN69L8gdSYp5._...",
"signatureQualifier'="qes_eidas",

Digests"{"hashes":["sTOgwOm+474gFj0d0x1iSNspKqbcsedleiqiDg/HWul="]}, ...} |
Return Signature(s)
Signature Object:"MIAGCSGAMIACAQEXDzANBglghkgBZ QUEAGEFADCABGKGhKIG...Ss4rEsQVAAAAAAAAAA=="]

13.10 Create a remote signature with a credential protected by

Signed document

RSSP-managed authorization



|User| |Signature Application

éSign document

Credential authorization
POST credentials/authorize
{"credentialld":"GX0112348", "authData":[]}

Service authorizes
credential use
Return SAD
{"SAD":"TIHRG-bAH3X1FQZ3ndFhXfL8gd"}

Request signature

POST signatures/signHash
{"hash".['8ckIu/eLZXvbgpxKLX+rFftEzhy6MF6 11JCAIUKq020="], |
"SAD": "TiHRG-bAH3X1FQZ3ndFhXfL8gd"} |

Return signature
{"signatures":["MTIzNDU2Nzg5SMDEyMzQ1Ng=="]}

! Signed document

13.11 Create multiple remote signatures from a list of hash values

|User| |Signature Application|

: Sign documents
i PIN

Credential authorization

POST credentials/authorize
{"credentialld":"GX0112348", "numSignatures":2,
"authData":[{"id": "PIN","value": "12345678"}]}

User authorizes
credential

Return SAD
{'SAD"-"TIHRG-bAH3X1FQZ3ndFhXfL8gd"}

Request signatures

POST signatures/signHash
{"hash":['8ck9u/el ZXvbgpxKLX+rFfEzhy6MF6 11JCIUKq020=", |
"nK/AUIxUuM/010JjcZ2KumGF3XP9PklecotZbp1bmWQ=", |
"AyXSgl2aFN1yWR/h4n5inl8XUyl+JATTD YKPt2XdSv8="],

"SAD": "TIHRG-bAH3X1FQZ3ndFhXfL8gd"}

Return signatures
{"signatures”:["MTIzNDU2Nzg5MDEyMzQ1Ng==",
"MjlyMjlyMjixMTEXMTEXMQ==",
"MzMzMzMzMzMONDQONDQONA=="]}

! Signed documents

13.12 Create a remote multi-signatures transaction with a PDF
document

This diagram shows the case of a PDF document that is sighed multiple times by the same signer. A
single credential authorization can be performed to authorize multiple signatures. However only the
initial hash of the document is available at authorization time. A new hash will be generated to
calculate the following signatures. For this reason, the credentials/extendTransaction method is
used to supply the new hash to obtain the SAD to calculate a new signature. See
credentials/extendTransaction for more information.




[Signature Application

éSign PDF document
i PIN

Credential authorization

POST credentials/authotize

{"credentialld":"GX0112348", "numSignatures":2,
"authData":[{"id": "PIN", "value": "12345678"}],
hash".["8ck9u/eLZXvbgpxKLX+rFftEzhy6MF6 11JCfIUKg020="}

User authorizes |

credential
Return SAD 1
{"SAD":"TIHRG-bAH3X1FQZ3ndFhXfL8gd"}

Request signature 1

POST signatures/signHash

{"hash":["8ck9u/eL ZXvbgpxKLX+rFftEzhy6MF6 11JCfIUKGg020="],
"SAD": "TiHRG-bAH3X1FQZ3ndFhXfL8gd"}

Return signature 1
{"signatures":["MTIzNDU2Nzg5MDEyMzQ1Ng=="]}

Extend transaction

POST signatures/extendTransaction
{hash":["'nK/iU9xUuM/010JjeZ2KumGF3XPIPklccotZbp1bmWQ="
"SAD":"TIHRG-bAH3X1FQZ3ndFhXfL8gd"}

Return SAD 2
{"SAD":"X1FQZ3ndFhkX_Fk19a0s7dgF\We="}

Request signature 2

POST signatures/signHash
{"hash":["'nK/AU9IxUuM/010JjcZ2KumGF3XP9PklccotZbp1bmWQ="], |
"SAD": "X1FQZ3ndFhkX Fk19a0s7dgFWe="} i

Return signature 2
{"signatures":{"MjlyMjlyMjlxMTEXMTExMQ=="]}

! Signed PDF document

CLOUD
SIGNATURE
CONSORTIUM

14 Change history

14.1 Changes since version 1.0.4.0

* Add certificate info into credentials/list method: It is now allowed to provide directly in the
credentials/list method the detailed information of the certificates.

¢ Add asymmetric signing: The possibility was added to use asynchronous call as was already
proposed in ETSI TS 119 432.

Add signing of documents: It is not only possible to create a cryptographic signature of a hash,
but also to create an AdES signature on a hash or a document. The functionality is more
powerful than the one introduced in ETSI TS 119 432 since it allows different signature formats
for different documents within one call, which is especially useful in case a certificate is only
created for one signature authorization, and this authorization should cover different types of
documents. It also allows to request JAJES signatures.

* Possibility to use authorization request payload (PAR) and rich authorization requests (RAR) in
the OAuth authorization.



Allow to use only the credential OAuth authorization (without service authorization) for
signing.

Add a chapter on the usage of the CSC protocol for creating electronic seals.

When creating a PAdES signature based on the hash document, provide the revocation
information so that this can be included in the final signed document.

Allow to request only credential which are valid, i.e. which can be used to sign, in the
credentials/list endpoint

Add explanation how to define algorithms via OIDs.

Allow to request signature authorization via OAuth on a credential of a specific type, without
specifying the credential ID. This is useful for short lived credentials which are only created for
a specific signature process.

Make explicit credential authorization more flexible: The explicit credential authorization
allows to use and combine different authorization types. This makes the implicit credential
authorization useless, because it can be expressed as part of the explicit credential
authorization.

Each time hash values are provided, provide also the hash algorithm



