
Architectures and
protocols for remote
signature applica�ons



Contents

Foreword
Revision history
Acknowledgements
Introduc�on
Intellectual Property Rights

Trademark no�ce
Essen�al Patents

Legal no�ces
1 Scope
2 Interpreta�on of Requirement Levels
3 References

3.1 Norma�ve references
3.2 Informa�ve references

4 Terms, defini�ons and abbrevia�ons
4.1 Terms and defini�ons
4.2 Abbrevia�ons

5 Conven�ons
5.1 Text conven�ons
5.2 Base64

6 Architectures and use cases
6.1 Supported architectures

7 Introduc�on to the remote service protocols API
7.1 Format and syntax of the API
7.2 Remote service base URI
7.3 Integrity and confiden�ality
7.4 Remote service informa�on
7.5 clientData parameter
7.6 Expressing algorithms

8 Authen�ca�on and authoriza�on
8.1 Service authoriza�on and authen�ca�on
8.2 Creden�al authoriza�on
8.3 Explicit creden�al authoriza�on

8.3.1 Authen�ca�on objects
8.4 OAuth 2.0 Authoriza�on

8.4.1 Restricted access to authoriza�on servers
8.4.2 oauth2/authorize
8.4.3 oauth2/pushed_authorize
8.4.4 oauth2/token
8.4.5 oauth2/revoke

8.5 Authen�ca�on and authoriza�on for electronic seals
8.5.1 Introduc�on
8.5.2 Service authoriza�on and authen�ca�on for electronic seals
8.5.3 Creden�al authoriza�on for electronic seals

9 Crea�ng a remote signature
10 Error handling

10.1 Error messages
11 The remote service APIs

11.1 info



11.2 auth/login
11.3 auth/revoke
11.4 creden�als/list
11.5 creden�als/info
11.6 creden�als/authorize
11.7 creden�als/authorizeCheck
11.8 creden�als/getChallenge
11.9 creden�als/extendTransac�on
11.10 signatures/signHash
11.11 signatures/signDoc
11.12 signatures/signPolling
11.13 signatures/�mestamp

12 JSON schema and OpenAPI descrip�on
13 Interac�on among elements and components

13.1 Remote signing service authoriza�on using Basic Authen�ca�on
13.2 Remote signing service authoriza�on using OAuth2 with Authoriza�on Code flow
13.3 Create a remote signature with a creden�al protected by a PIN
13.4 Create a remote signature with a creden�al protected by an “online” OTP (based
on SMS)
13.5 Create a remote signature with a creden�al protected by a mobile app
13.6 Create a remote signature with a creden�al protected by a PIN and an “online” OTP
(based on SMS)
13.7 Create a remote signature with a creden�al protected by OAuth2 with
Authoriza�on Code flow
13.8 Create a remote signature with creden�al and signature qualifier with OAuth2
Authoriza�on Code flow
13.9 Create a remote signature with OAuth2 Authoriza�on Code flow and Pushed and
Rich Authoriza�on Request
13.10 Create a remote signature with a creden�al protected by RSSP-managed
authoriza�on
13.11 Create mul�ple remote signatures from a list of hash values
13.12 Create a remote mul�-signatures transac�on with a PDF document

14 Change history
14.1 Changes since version 1.0.4.0

Foreword
This document is a work by members of the Cloud Signature Consor�um, a nonprofit associa�on
founded by industry and academic organiza�ons for building upon exis�ng knowledge of solu�ons,
architectures and protocols for Cloud-based Digital Signatures, also defined as “remote” Electronic
Signatures.

The Cloud Signature Consor�um has developed the present specifica�on to make these solu�ons
interoperable and suitable for uniform adop�on in the global market, in par�cular – but not
exclusively – to meet the requirements of the European Union's Regula�on 910/2014 on Electronic
Iden�fica�on and Trust Services (eIDAS) [i.1], which formally took effect on 1 July 2016.

Revision history



Version Date Version change detailsVersion Date Version change details

0.1.7.9-PR 14/02/2017 Public Pre-Release for early implementa�ons

1.0.2.4-PR 24/09/2018 V1 Pre-Release for public comments

1.0.3.0 13/12/2018 V1 Public Release

1.0.4.0 28/06/2019 V1 Updated with new IPR informa�on and errata

2.0.0.0 25/03/2022 V2 Pre-Release for public comments

2.0.0.1 19/08/2022 V2 Pre-Release a�er solving public comments

Acknowledgements
This work is the result of the contribu�ons of several individuals from the Technical Working Group
of the Cloud Signature Consor�um and some addi�onal contributors. In par�cular, the following
people have provided a significant contribu�on to the drawing up and revision of the present
specifica�on:

Ałła Stoliarowa-Myć, Andrea Röck, Andrea Valle, Andrew Papastefanou, Andreas Vollmert, Arno
Fiedler, Bernd Wild, Carlos Ares, Cornelia Enke, Daniel Fe�, David Ruana, Davide Barelli, Enrico
Entschew, Francesco Barcellini, Franck Leroy, Giuliana Marzola, Giuseppe Damiano, Harald Bratko,
Håvard Grindheim, Iñigo Barreira, Jon Ølnes, Kapil Kha�ar, Dr. Kim Nguyen, Klaus-Dieter Wirth, Luca
Boldrin, Luigi Rizzo, Mangesh Bhandarkar, Marc Kaufman, Marcin Szulga, Meena Muralidharan,
Michael Traut, Patrycja Wiktorczyk, Patryk Sosiński, Peter Lipp, Prof. Reinhard Posch, Thomas
Pielczyk, Torsten Lodderstedt.

Introduc�on
For a long �me, transac�onal e-services have been designed for typical end-user devices such as
desktop computers and laptops. Accordingly, exis�ng digital signature solu�ons are tailored to the
characteris�cs of these devices as well. This applies to smart card and USB token-based solu�ons.
These tradi�onal signature solu�ons implicitly assume that the user accesses e-services from a
desktop or laptop computer and in addi�on uses a smart card or token to create any required digital
signatures. This assump�on is not valid any longer. During the past few years, smartphones, tablets
and other mobile end-user devices have started to replace desktop and laptops computers.

This situa�on raises several challenges for e-services: smart cards and tokens cannot be easily
connected to smartphones and other mobile devices, or cannot at all. For instance, smartphones
usually do not provide support for USB devices, which is the common technology for smart card
based solu�ons.

In this regard, recent regula�ons in various regions worldwide – like eIDAS [i.1] in the European
Union – have introduced the concept of electronic signatures that are created using a “remote
signature crea�on device”, which means that the signature device is not anymore a personal device
under the physical control of the user, but rather it is replaced by cloud-based services offered and
managed by a trusted service provider.

This is, in summary, the scope of the Cloud Signature Consor�um, also known as CSC, aiming at the
defini�on of a common architecture, building blocks and communica�on protocols intended for
crea�ng a standard API to integrate the essen�al components of a remote signature solu�on
established among different service providers and consumers.



Where the context of the eIDAS Regula�on is applicable, this specifica�on, and the term “remote
signature solu�on” herein developed, aim to cover solu�ons for remote electronic signatures and
remote electronic seals, in the domains of both qualified and advanced electronic signatures / seals.

Intellectual Property Rights
The Intellectual Property Rights Policy (IPR Policy) of the Cloud Signature Consor�um is available at
h�ps://cloudsignatureconsor�um.org/ipr/.

Trademark no�ce

The Cloud Signature Consor�um logo is a Registered Trademark of the Cloud Signature Consor�um: 
EU Trademark number 015579048.

Essen�al Patents

IPRs essen�al or poten�ally essen�al to the present document may have been declared to the Cloud
Signature Consor�um. The informa�on pertaining to these essen�al IPRs, if any, is available on
request from the Cloud Signature Consor�um secretariat at info@cloudsignatureconsor�um.com.

No inves�ga�on, including IPR searches, has been carried out by the Cloud Signature Consor�um. No
guarantee can be given as to the existence of other IPRs not referenced in the present document
which are, or may be, or may become, essen�al to the present document.

Legal no�ces
The Cloud Signature Consor�um seeks to promote and encourage broad and open industry adop�on
of its standard.

  

This work is licensed under the Crea�ve Commons A�ribu�on-ShareAlike 4.0 Interna�onal
License (CC BY-SA 4.0). To view a copy of this license, visit
h�p://crea�vecommons.org/licenses/by-sa/4.0/ or send a le�er to Crea�ve Commons, PO Box
1866, Mountain View, CA 94042, USA.

The present document does not create legal rights and does not imply that intellectual property
rights are transferred to the recipient or other third par�es. The adop�on of the specifica�on
contained herein does not cons�tute any rights of affilia�on or membership to the Cloud Signature
Consor�um VZW.

This document is provided “as is” and the Cloud Signature Consor�um, its members and the
individual contributors, are not responsible for any errors or omissions.

https://cloudsignatureconsortium.org/ipr/
mailto:info@cloudsignatureconsortium.com
http://creativecommons.org/licenses/by-sa/4.0/


The Trademark and Logo of the Cloud Signature Consor�um are registered, and their use is reserved
to the members of the Cloud Signature Consor�um VZW. Ques�ons and comments on this
document can be sent to info@cloudsignatureconsor�um.org.

1 Scope
When digital signatures are created within a device, the interfaces and func�ons are standardized,
e.g. the API used by the applica�on program to access the signature crea�on libraries and the
interface to the smart card or similar device (if a device is used) holding the signing key. When digital
signatures move to the cloud, the func�ons needed to create a digital signature can be distributed
across several service instances, each carrying out one or more steps in the signature crea�on
process. The interfaces between such services are however un�l now not standardized.

The Cloud Signature Consor�um aims to fill this gap in standardiza�on by defining the architectural
design, communica�on protocols, applica�on programming interfaces, data structures, and technical
requirements needed to establish interoperable solu�ons for cloud-based digital signatures. While
these specifica�ons are applicable in a wide variety of use cases with different security
requirements, the fulfilment of requirements imposed by the eIDAS Regula�on of the EU [i.1] is
par�cularly addressed, suppor�ng the crea�on of “advanced” or “qualified” electronic signatures
and electronic seals in the cloud.

This document contains technical specifica�ons that are intended for use by applica�ons for crea�ng
digital signatures in the cloud and by a variety of applica�ons consuming these services. By
implemen�ng their services according to these specifica�ons, service providers can ensure that
services are applicable as parts of complete digital signature systems in the cloud in a plug and play
manner.

Exis�ng standards and open specifica�ons are considered by the consor�um as far as applicable.

The following are out of scope of this specifica�on:

Policy requirements for (qualified and other) service providers; this is an area of
standardiza�on covered by ETSI.

Signing key crea�on and enrollment; although keys MAY be created by the remote service
during the signing workflow, these ac�vi�es are not covered by specific API methods.

Signature and cer�ficate formats; use of the standards specified by ETSI is RECOMMENDED.

Signature valida�on; this will be addressed in future specifica�ons from the Consor�um.

Security evalua�on and requirements for hardware components used to hold signing keys
(HSM – hardware security module); this is being standardized by CEN in Europe and FIPS in the
USA.

Internal func�onality and internal interfaces in service provider systems.

Note that the current specifica�ons mainly cover architectures where the signing key is held “in the
cloud”, i.e. by a signature crea�on device managed by a service provider. Architectures where the
signing key is in the hand of the signer, stored in the user’s device or in an a�ached smart card or
similar, are not covered as a par�cular case. The consor�um will consider the need for further
specifica�ons covering situa�ons where a user device holding the signing key interacts with cloud

mailto:info@cloudsignatureconsortium.org


services for digital signature crea�on, e.g. cloud services MAY be used for document storage, hash
computa�on, and signature forma�ng.

2 Interpreta�on of Requirement Levels
The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as
described in RFC 2119 [1].

3 References

3.1 Norma�ve references

The following documents, in whole or in part, are norma�vely referenced in this specifica�on and
are indispensable for its applica�on. For dated references, only the edi�on cited applies. For
undated references, the latest edi�on of the referenced document (including any amendments or
errata) applies.

[1] IETF RFC 2119: “Key words for use in RFCs to Indicate Requirement Levels”.

[2] IETF RFC 3161: “Internet X.509 Public Key Infrastructure Time-Stamp Protocol (TSP)”.

[3] IETF RFC 3986: “Uniform Resource Iden�fier (URI): Generic Syntax”.

[4] IETF RFC 4514: “Lightweight Directory Access Protocol (LDAP): String Representa�on
of Dis�nguished Names”.

[5] IETF RFC 4627: “The applica�on/json Media Type for JavaScript Object Nota�on
(JSON)”.

[6] IETF RFC 4648: “The Base16, Base32, and Base64 Data Encodings”.

[7] IETF RFC 5246: “The Transport Layer Security (TLS) Protocol Version 1.2”.

[8] IETF RFC 5280: “Internet X.509 Public Key Infrastructure Cer�ficate and Cer�ficate
Revoca�on List (CRL) Profile”.

[9] IETF RFC 5646: “Tags for Iden�fying Languages”.

[10] IETF RFC 5816: “ESSCertIDv2 Update for RFC 3161”.

[11] IETF RFC 6749: “The OAuth 2.0 Authoriza�on Framework”.

[12] IETF RFC 6750: “The OAuth 2.0 Authoriza�on Framework: Bearer Token Usage”.

[13] IETF RFC 7009: “OAuth 2.0 Token Revoca�on”.

[14] IETF RFC 7235: “Hypertext Transfer Protocol (HTTP/1.1): Authen�ca�on”.

[15] IETF RFC 7518: “JSON Web Algorithms (JWA)”.



[16] IETF RFC 7519: “JSON Web Token (JWT)”.

[17] IETF RFC 7521: “Asser�on Framework for OAuth 2.0 Client Authen�ca�on and
Authoriza�on Grants”

[18] IETF RFC 8017: “PKCS #1: RSA Cryptography Specifica�ons Version 2.2”.

[19] IETF RFC 8446: “The Transport Layer Security (TLS) Protocol Version 1.3”.

[20] IETF dra�-ie�-oauth-security-topics: “OAuth 2.0 Security Best Current Prac�ce”

[21] ETSI TS 119 312: “Electronic Signatures and Infrastructures (ESI); Cryptographic
Suites”.

[22] ISO 3166-1: ” Codes for the representa�on of names of countries and their
subdivisions — Part 1: Country codes”.

[23] IETF RFC 8414: “OAuth 2.0 Authoriza�on Server Metadata”

[24] IETF RFC 7591: “OAuth 2.0 Dynamic Client Registra�on Protocol”

[25] IETF RFC 7636: “Proof Key for Code Exchange by OAuth Public Clients”

[26] IETF RFC 8705: “OAuth 2.0 Mutual-TLS Client Authen�ca�on and Cer�ficate-Bound
Access Tokens”

[27] IETF Dra� dra�-ie�-oauth-rar: “OAuth 2.0 Rich Authoriza�on Requests”

[28] IETF Dra� dra�-ie�-oauth-par: “OAuth 2.0 Pushed Authoriza�on Requests”

[29] ETSI EN 319 122-1 “Electronic Signatures and Infrastructures (ESI); CAdES digital
signatures; Part 1: Building blocks and CAdES baseline signatures” :::

[30] ETSI EN 319 132-1: “Electronic Signatures and Infrastructures (ESI); XAdES digital
signatures; Part 1: Building blocks and XAdES baseline signatures”

[31] ETSI EN 319 142-1: “Electronic Signatures and Infrastructures (ESI); PAdES digital
signatures; Part 1: Building blocks and PAdES baseline signatures”

[32] ETSI TS 119 182-1: “Electronic Signatures and Infrastructures (ESI); JAdES digital
signatures; Part 1: Building blocks and JAdES baseline signatures”

[33] IETF RFC 6960: “X.509 Internet Public Key Infrastructure Online Cer�ficate Status
Protocol - OCSP”

3.2 Informa�ve references

The following documents, in whole or in part, are informa�vely referenced in this specifica�on and
may be a useful contribu�on for its applica�on. For dated references, only the edi�on cited applies.
For undated references, the latest edi�on of the referenced document (including any amendments
or errata) applies.

[i.1] Regula�on (EU) No 910/2014 of the European Parliament and of the Council of 23
July 2014 on electronic iden�fica�on and trust services for electronic transac�ons in the



internal market and repealing Direc�ve 1999/93/EC.

[i.2] ETSI SR 019 020: “The framework for standardiza�on of signatures; Standards for
AdES digital signatures in mobile and distributed environment”.

[i.3] IETF RFC 3447: “Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography
Specifica�ons Version 2.1”.

[i.4] IETF RFC 6101: “The Secure Sockets Layer (SSL) Protocol Version 3.0”.

[i.5] CEN EN 419 241-1: “Trustworthy Systems Suppor�ng Server Signing - Part 1:
General System Security Requirements”

[i.6] ISO/IEC 19790: “Informa�on technology - Security techniques - Security
requirements for cryptographic modules”

[i.7] Hickman, Kipp, “The SSL Protocol”, Netscape Communica�ons Corp., Feb 9, 1995

[i.8] ETSI TS 119 001: “Electronic Signatures and Infrastructures (ESI); The framework for
standardiza�on of signatures; Defini�ons and abbrevia�ons.

[i.9] ETSI TS 119 312: “Electronic Signatures and Infrastructures (ESI); Cryptographic
Suites.

[i.10] South African Act No. 25 of 30 August 2002: Electronic Communica�ons and
Transac�ons Act, 2002

[i.11] Web Authen�ca�on: An API for accessing Public Key Creden�als Level 2, 2021

[i.12] OpenID Connect Core 1.0 incorpora�ng errata set 1, 2014

4 Terms, defini�ons and abbrevia�ons

4.1 Terms and defini�ons

For the purposes of this specifica�on, the following terms and defini�ons apply.

access token: creden�als used to access protected resources. It’s a string represen�ng an
authoriza�on issued to the client. The string is usually opaque to the client.

Note 1: As defined in IETF RFC 6749 [11].

authen�ca�on factor: piece of informa�on and/or process used to authen�cate or verify the
iden�ty of an en�ty.

Note 2: As defined in ISO/IEC 19790 [i.6].

EXAMPLE: A password or PIN.

authoriza�on server: The server issuing access tokens to the client a�er successfully authen�ca�ng
the resource owner and obtaining authoriza�on.



Note 3: As defined in IETF RFC 6749 [11].

creden�al: cryptographic object and related data used to support remote digital signatures over the
Internet. Consists of the combina�on of a public/private key pair (also named “signing key” in CEN
EN 419 241-1 [i.5]) and a X.509 public key cer�ficate managed by a remote signing service provider
on behalf of a user.

digital signature: data appended to, or a cryptographic transforma�on (see cryptography) of a data
unit that allows a recipient of the data unit to prove the source and integrity of the data unit and
protect against forgery e.g. by the recipient [i.8]

Note 4: Digital signature is a technical term. Specifically, but not exclusively, aims at suppor�ng legal
terms as electronic signatures, advanced electronic signatures, qualified electronic signatures,
electronic seals, advanced electronic seals, and qualified electronic seals as per Regula�on (EU)
No 910/2014 [i.1].

electronic signature: digital signature created by using a cer�ficate issued to a natural person
ensuring the integrity and origin of the document and the signatory commitment to the document
content. ::: {.NOTE} Electronic signatures used in the present document are meant to specifically, but
not exclusively, support the electronic signatures defined as per Regula�on (EU) No 910/2014 [i.1].
:::

electronic seal: digital signature created by using a cer�ficate issued to a legal person or business
unit ensuring the integrity and origin of the document, without necessarily commi�ng to the
content.

Note 5: Electronic seals used in the present document are meant to specifically, but not exclusively,
support the electronic seals defined as per Regula�on (EU) No 910/2014 [i.1].

iden�ty proofing: process by which the iden�ty of an applicant is verified by the use of evidence
a�es�ng to the required iden�ty a�ributes

Note 6: Depending on how the claims will be used, different assurance levels will be required when
verifying the claims.

remote service: service implemen�ng the API described in this specifica�on and delivered on the
Internet.

remote signing service provider: service provider managing a set of creden�als on behalf of
mul�ple users and allowing them to create a remote signature with a stored creden�al.

Note 7: A remote signing service provider typically operates an HSM (or func�onally equivalent
mul�-user secure device) and an authen�ca�on service. It manages the users and provides a
signing service that can be accessed over the Internet by means of the API described in this
specifica�on.

Note 8: A remote signing service typically manages signing keys and cer�ficates that are created
before the signing opera�ons take place. Another common scenario is when the signing key and
the cer�ficate are created in the course of a signing opera�on. In the present specifica�on, this



is referred to as “Short-Lived Creden�al Signing” (also called “ad-hoc” or “on-the-go” creden�al
signing).

remote signature crea�on device: signature crea�on device used remotely from signer perspec�ve
to provide control of signing opera�on on its behalf of the signer.

short lived creden�als: temporary creden�als created to sign a specific transac�on where those
creden�als will then expire or be explicitly revoked shortly a�er being applied in the signature
opera�on. Methods to create and manage short lived creden�als across mul�ple transac�ons will be
handled in a future release of this specifica�on.

::: {.NOTE} Once the end-user has had their claims successfully verified in an iden�ty proofing
process, they become eligible to sign with short-lived creden�als. The assurance level of the claims
associated with the iden�ty will determine the trust level that can be achieved with the short-lived
creden�als.

signature ac�va�on data: set of data used to control a given signature opera�on, performed by a
cryptographic module, on behalf of the signer.

signature ac�va�on module: configured so�ware that uses the SAD in order that the signing keys
are used under sole control of the signer.

Note 9: As defined in CEN EN 419 241-1 [i.5].

signature applica�on: client applica�on or service calling the remote signing service provider to
create a remote signature.

signature applica�on provider: service provider managing a signature applica�on and offering it as a
service over the Internet or other communica�on channel.

4.2 Abbrevia�ons

AdES: Advanced Electronic Signature

API: applica�on programming interface

HSM: hardware security module

RSCD: remote signature crea�on device

RSSP: remote signing service provider

SAD: signature ac�va�on data

SAM: signature ac�va�on module

SCAL1: sole control assurance level 1

Note 10: As defined in CEN EN 419 241-1 [i.5].

SCAL2: sole control assurance level 2



Note 11: As defined in CEN EN 419 241-1 [i.5].

SDR: signer’s document representa�on

5 Conven�ons

5.1 Text conven�ons

This specifica�on adopts the following text conven�ons to help iden�fy various types of informa�on.

Table 1 – Text conven�ons

Text conven�on Example

The ver�cal bar ( | ) indicates a possible value for selec�on or outcome and SHALL be
interpreted as “or”.

YES | NO

Text in colored boxes is example code.
POST 
/csc/v2/credentials/info 
HTTP/1.1

Bold text indicates the name of an API method. creden�als/list

Italic text indicates the name of an API input or output parameter. access_token

In general, API names as well as API input or output parameters defined in this specifica�on use the
“camelCase” nota�on, like authType or creden�als/extendTransac�on. However, names and
parameters that are defined in other standards, like those in the domain of authen�ca�on and
related to OAuth 2.0, are used here in their original format to facilitate understanding and
interoperability, using “snake_case”, like refresh_token, i.e., two names separated by an underscore.

5.2 Base64

When data is required to be Base64-encoded, it SHALL be encoded as “base64” as defined in RFC
4648 [6]. To avoid JSON representa�on issues line breaks SHALL NOT be used within Base64-
encoded data. When data is base64url-encoded it SHALL be encoded as “base64url” as defined in
RFC 4648 [6].

6 Architectures and use cases
The present specifica�on and the protocols defined herein aim to support different use cases.
However, they focus on the scenario of remote signing defined for example as “the crea�on of
remote electronic signatures, where the electronic signature crea�on environment is managed by a
trust service provider on behalf of the signatory” in EU Regula�on 910/2014 [i.1], whereas §52.

This means that other scenarios for signing in distributed environments assisted by remote servers –
like those described in ETSI SR 019 020 [i.2](“Standards for AdES digital signatures in mobile and
distributed environment”) – are not covered in the present version of this specifica�on. In par�cular,
use cases where the signing key is contained within a signer's personal device are not covered: for
example, signing a document located on a server with a private key contained in a mobile SIM card,



or in a cryptographic device connected to a personal computer. These are relevant use cases,
although not fi�ng in the core defini�on of “remote signature”, so they may be specifically covered
in future updates of the specifica�on.

6.1 Supported architectures

The current version of the specifica�ons focuses on the interface between the Signature Applica�on
and the remote signing service provider. The following figure shows a typical but not restric�ve
example of the architecture.

Figure 1: Remote signing corners

There are four main corners in the remote signing scenario.

The Signature Applica�on retrieves the document to be signed from the user, and, if needed the
cer�ficates, revoca�on informa�on and �me-stamps from the corresponding trust service provider.
It requests the remote signing service provider to create the signature of the hash value.

The RSSP connects to the CA for the creden�al binding. In some cases, the CA may also be included
in the process of crea�ng the signing key.

The authoriza�on for service or creden�al access can be done either passing through the signature
applica�on or using a redirec�on to an external OAuth 2.0 authoriza�on server (AS). In many cases,
the authoriza�on server is part of the RSSP.

The redirect-based model employed by OAuth allows the RSSP to u�lize FIDO/WebAuth [i.11] or 3rd
party iden�ty providers (e.g. via OpenID Connect [i.12]) for user authen�ca�on.

7 Introduc�on to the remote service protocols API
Web applica�ons and services use Applica�on Programming Interfaces (APIs) to talk to each other.
Technically speaking, in the web service context, an API is a set of programming instruc�ons for
accessing a Web-based so�ware applica�on or service.



The remote service protocols API allows a signature applica�on to communicate with a remote
service via the Internet by leveraging a sequence of calls to methods.

7.1 Format and syntax of the API

This specifica�on defines Web services APIs that are based on technical standards and protocols
such as HTTP and JSON. This API uses HTTP POST requests with JSON payload and JSON responses.
JSON is an open-standard media type format as defined by RFC 4627 [5] that uses human-readable
text to transmit data objects consis�ng of a�ribute-value pairs. These proper�es make JSON an ideal
data-interchange language which is used as the most common data format for asynchronous
communica�ons.

The func�ons offered by the remote service are represented by HTTP RPC endpoints accep�ng
arguments as JSON in the request body and returning results as JSON in the response body. For this
reason, the HTTP header of the invoca�on method SHALL include a Content-Type: applica�on/json
header.

The remote service SHALL use HTTP version 1.1 or higher.

A JSON schema corresponding to the API defined in the present specifica�on is available. See JSON
schema and OpenAPI descrip�on.

7.2 Remote service base URI

The remote service base URI defines the style and format of the HTTP endpoint URI of a remote
service conforming to this specifica�on.

The base URI contains the version number of the APIs that is implemented by the remote signing
service provider. In the case of this specifica�on, the version number SHALL be v2. Future versions of
this specifica�on MAY not be completely backward compa�ble.

https://service.domain.org/xxx/csc/v2/

The base URI SHALL start with an arbitrary URL defined by the service provider
(‘h�ps://service.domain.org/xxx’ in the example above) and SHALL end with ‘/csc/v2’. The endpoints
of the API methods documented in this specifica�on SHALL be concatenated to the base URI. An
excep�on is given by the OAuth 2.0 methods, as defined in OAuth 2.0 Authoriza�on, which MAY use
URIs that are independent from the service base URI.

7.3 Integrity and confiden�ality

A remote service conforming to this specifica�on SHALL guarantee the integrity and confiden�ality
of the communica�on channel between the signature applica�on and the remote service.

The integrity and confiden�ality of the communica�on channel between the user and the signature
applica�on or the remote service are out of the scope of this specifica�on.

The remote service SHOULD implement Transport Layer Security (TLS) in order to ensure the
integrity and confiden�ality of the communica�ons. This prevents easy eavesdropping or
impersona�on if authen�ca�on creden�als are hijacked. Another advantage of always using TLS is
that guaranteed encrypted communica�ons simplifies the authen�ca�on schemes, so for example



simple mechanisms like Basic HTTP authen�ca�on can be used because the elements used in the
authen�ca�on (username and password) are always transmi�ed over an encrypted channel.

The remote service MAY use other methods than TLS, for example using VPN.

TLS 1.3 as described in RFC 8446 [19] is, at the �me of this wri�ng, the latest version of TLS. Un�l TLS
1.3 is widely adopted, the previous version TLS 1.2 as described in RFC 5246 [7] SHALL be supported
by remote services conforming to this specifica�on and is the RECOMMENDED mechanism to use for
interoperability reasons. TLS 1.2 provides access to advanced cipher suites that support ellip�c curve
cryptography and authen�cated encryp�on with associated data (AEAD) block cipher modes. TLS 1.1
MAY be used, but it is also less secure. TLS 1.0 is considerably less secure and some security
cer�fica�ons like PCI DSS 3.1 explicitly forbid it, so remote services SHOULD NOT support it.

All versions of SSL (SSLv3 as defined in RFC 6101 [i.4] or SSLv2 as defined in [i.7]), the security
protocol used before TLS, are considered insecure. Remote services conforming to this specifica�on
SHALL NOT implement SSL.

7.4 Remote service informa�on

This specifica�on defines a protocol to connect a signature applica�on to a remote service. Other
similar specifica�ons exist in the industry, but they are typically proprietary and incompa�ble
between each other, so if a signature applica�on wants to support mul�ple remote services, then
the development effort would increase significantly.

This specifica�on has been designed to support modular services that may be implemented in line
with the capacity and mission of the provider. This means that a remote service that supports this
specifica�on MAY implement only a subset of the API methods defined herein. In order to facilitate
this approach, this specifica�on defines the info method, which all remote services SHALL
implement to allow the signature applica�on to discover which of the API methods are supported.

In addi�on, the info method returns informa�on on the remote service which may be useful to a
calling applica�on to access the func�ons and features of the service.

7.5 clientData parameter

Most methods allow to provide clientData as an op�onal input parameter. It can contain any
arbitrary data from the signature applica�on. This data allows the signature applica�on to handle
other applica�on-specific data like, e.g., a transac�on iden�fier.

The remote service MAY use this informa�on and it MAY also log this data together with informa�on
of the call. This parameter MAY expose sensi�ve data to the remote service. Therefore, it SHOULD
be used carefully by signature applica�ons.

7.6 Expressing algorithms

The present document expresses algorithms via Object IDen�fiers (OID). OIDs are iden�fiers
standardized by the Internal Telecommunica�on Union (ITU) and ISO/IEC to iden�fy a specific object.
They are represented by numbers, separated by dots, and are constructed in a tree-like structure. A
list of the most common OIDs for algorithms used in signatures can be found in chapter 10 of ETSI TS
119 312 [i.9]. See also the OID repository h�p://oid-info.com in search of specific OIDs.



8 Authen�ca�on and authoriza�on
This specifica�on supports two types of authen�ca�on and authoriza�on:

a. Service authoriza�on and authen�ca�on.

b. Creden�al authoriza�on.

8.1 Service authoriza�on and authen�ca�on

In order to protect the remote service from unauthorized access, this specifica�on requires the
signature applica�on to obtain a valid “access token” to authorize the access to the APIs. This type of
authoriza�on is called service authoriza�on. Various types of authoriza�on mechanisms can be
supported, and more will be supported in future versions, and the signature applica�on SHALL adopt
any of those available from the remote service as stated in the response to the info method, as
defined in info.

The remote service MAY also adopt an indirect way of authorizing access to the API. The underlying
communica�on channel with the signature applica�on MAY ensure access control in a different way,
for example with a private point-to-point LAN connec�on or through a VPN (Virtual Private
Network).

The access to the APIs SHALL be authen�cated. When the authen�ca�on is under the control of the
signature applica�on provider, then the user SHALL be properly authen�cated by this provider
before ge�ng access to the remote service. This scenario supports organiza�ons that manage a user
community with an exis�ng form of authen�ca�on, for example a Bank managing the users from
their Internet Banking service. This means that, in order to retrieve the signing creden�als
associated to a user, this organiza�on would have to take care of the correspondence between the
user iden�fier in their own domain and the user iden�fier in the remote service’s domain.

When the authen�ca�on is under the control of the remote service, the signature applica�on SHALL
perform a token-based authen�ca�on to the remote service by means of authen�ca�on factors
collected from the user, preferably via an OAuth 2.0 authoriza�on mechanism, or through HTTP
Basic or HTTP Digest authen�ca�on. In case the signature applica�on is not under the control of the
user, OAuth 2.0 authoriza�on SHOULD be used. In prac�ce, the signature applica�on will require the
user to authen�cate directly to the remote service using any of the available methods. This would
offer an authen�ca�on mechanism even in case the signature applica�on and the remote service
have not previously established any form of service authen�ca�on.

Two methods are defined in this specifica�on to obtain an access token to authorize the access to
the remote service API:

The oauth2/token method SHALL be used when an OAuth 2.0 authoriza�on mechanism is
supported by the remote service. The signature applica�on will not collect any authen�ca�on
factors from the user, but instead it will redirect to the remote service that will authen�cate
the user. See OAuth 2.0 Authoriza�on for further informa�on on how to implement OAuth 2.0
authoriza�on.

The auth/login method SHALL be used when OAuth 2.0 is not available and HTTP Basic or
Digest authen�ca�on mechanisms are preferred and supported by the remote service. The



signature applica�on will collect the authen�ca�on factors from the user and will submit them
to the remote service to obtain an authoriza�on.

In both cases, if the user grants the authoriza�on, the remote service will return a service access
token to the signature applica�on. From then on, all authen�cated requests to the API methods
defined in this specifica�on SHALL use an Authoriza�on header with Bearer type followed by that
service access token.

If the user does not grant the authoriza�on, the authoriza�on server will return an error message
and no access to authen�cated API methods will be possible.

8.2 Creden�al authoriza�on

Accessing a creden�al for remote signing requires an authoriza�on from the user who owns the
signing key associated to it. As a special case, the user might also authorize the crea�on of one or
more signatures along with a signature qualifier instead of a par�cular creden�al iden�fica�on. This
is especially useful in conjunc�on with short-lived creden�als.

The remote service can manage the authoriza�on in mul�ple ways, with different technologies and a
variable number of authoriza�on factors. This really depends on the implementa�on and on the
policy adopted by the remote service, and MAY also be determined by the level of compliance to
industry and regulatory requirements, like in the case of standards like CEN EN 419 241-1 [i.5], which
defines different “sole control assurance levels”, SCAL1 and SCAL2.

For a precise descrip�on of the difference between SCAL1 and SCAL2 we refer to CEN EN 419 241-1
[i.5]. However, with regards to this specifica�on, two aspects should be noted about SCAL2:

1. The signature ac�va�on data, used to authorize a signature, is linked to the document or the
documents to be signed.

2. A two-factor authoriza�on is needed to authorize a signature.

Two different types of creden�al authoriza�on are defined and supported in this specifica�on:

Explicit authoriza�on

OAuth 2.0 authoriza�on

Explicit authoriza�on means that the remote service relies on the signature applica�on to collect, in
its own environment, authen�ca�on factors like PIN or One-Time Passwords (OTP), according to the
parameters returned by the creden�als/info method, as defined in creden�als/info. This method
returns the type, format and combina�on of required or op�onal authen�ca�on factors, such that
the signature applica�on could show the proper interac�ve controls to collect them from the user.

A common type of explicit authoriza�on is based on a sta�c PIN - typically defined by the user -
associated to the signing key when it is generated. To increase the level of assurance of user control,
ensuring that only the authorized user could create a signature with a certain creden�al, a stronger
authoriza�on factor MAY be adopted. A dynamically generated text-based One-Time Password (OTP)
is a common strong authoriza�on mechanism. This specifica�on directly supports the combina�on
of various mechanisms which can be used complementary to service authoriza�on to achieve the
highest levels of assurance of the user’s sole control, and can be used to support SCAL1 and SCAL2
as defined in CEN 419 241-1 [i.5].



Biometric authen�ca�on and phone call drop are other examples of possible authoriza�on
mechanisms. As these and other authoriza�on mechanisms require a very peculiar user interface,
they can be supported by means of an OAuth 2.0-based authoriza�on scheme.

8.3 Explicit creden�al authoriza�on

To be able to support the broadest range of authoriza�on mechanisms, this specifica�on provides a
generic way to define access control to creden�als. Each creden�al is associated with a set of
authen�ca�on object types and an access rule describing the precondi�on to authorize the
creden�al access.

8.3.1 Authen�ca�on objects

An authen�ca�on object type describes the data structure and protocol of authen�ca�on
mechanisms, much the same way as it is done in the PKCS#15 standard. Authen�ca�on object types
are returned by the creden�als/info method, such that the Signature Applica�on can show the
proper interac�ve controls to collect them from the user.

Each authen�ca�on object type is associated with a type property, defining both the data structure
that a client applica�on SHALL provide and the protocol that SHALL be processed. The id property is
used to iden�fy the associated authen�ca�on object type in a concrete authen�ca�on object data
structure.

The number and type of authen�ca�on object types is provider specific.

Depending on the authen�ca�on object type the Signature Applica�on collects concrete
authen�ca�on object data and drives the associated protocol. The authen�ca�on object data is sent
using the method creden�als/authorize.

The following is an example authen�ca�on object type, describing the need for a password entry:

This indicates to the client that it needs to send an alphanumeric password within a later
authoriza�on request, iden�fying it as “PIN”. When reques�ng user input, the client may present the
required data as “Personal PIN” to the user.

In consequence, the client might send an authen�ca�on object as seen in the following example:

This example assumes that the client has received a PIN value of “1234”, which is conveyed to the
authoriza�on endpoint.

See the following sec�ons for a thorough descrip�on of these data structures.

{
    "type": "Password",  
    "id": "PIN",  
    "label": "Personal PIN",  
    "format" : "A"  
}

{
    "id": "PIN",  
    "value": "1234"  
}



8.3.1.1 Out-of-band response

“Out-of-band response” is used here whenever an authen�ca�on object is sent to the service
provider by using some protocol and session not associated and described in this API specifica�on.
This can be for example a SMS, phone or email channel.

With an out-of-band response the call to creden�als/authorize does not have any knowledge about
the state of the out-of-band task. Processing of the call can be implemented using a polling or
blocking approach. As such, the processing can either

terminate with a HTTP 200, returning the specified result tokens.
terminate with a HTTP 202 as an indica�on that the out-of-band result is not yet available. The
client has to re-issue a request to creden�als/authorizeCheck (polling). Eventually the request
will terminate with an error or HTTP 200.

8.3.1.2 Common proper�es

The following proper�es are common to all authen�ca�on object types as they are received from
creden�als/info.

Name Presence Descrip�on

type REQUIRED The type of the authen�ca�on object. This describes the data structure and protocol. The value
SHALL be one of the tokens defined in this specifica�on. A provider MAY not support all token
types.

id REQUIRED The unique iden�fier of the authen�ca�on object.

label OPTIONAL A label to be presented to the user. It is used to iden�fy the requested authen�ca�on data in
human readable manner.

descrip�on OPTIONAL A descrip�on to be presented to the user. It carries instruc�ons on how to provide the
authen�ca�on data.

The following proper�es are common to all authen�ca�on objects as they are sent via
creden�als/authorize.

Name Presence Descrip�on

id REQUIRED The unique iden�fier of the authen�ca�on object.

8.3.1.3 Password, in band response

The Password type simply requires the client to collect authen�ca�on informa�on from the user and
send it to the provider in-band.

Be aware that from a provider point of view an OTP generated sta�cally / offline by a client side
token is simply a “Password” type, too.

This authen�ca�on object type allows for the defini�on of - Simple password authen�ca�on -
“offline” OTP genera�on - Combina�ons thereof, e.g. the requirement of having two PINs entered (4
eyes).

Authen�ca�on type proper�es:

Name Presence Value Descrip�on



Name Presence Value Descrip�on

type REQUIRED “Password”

format OPTIONAL “A”|“N” Specifies the format of the password: - “A”: alphanumeric text; allowed characters: A-
Z | a-z | 0-9 - “N”: numeric text If omi�ed, any character is allowed.

generator OPTIONAL String If a client side device or algorithm is needed to derive the password, it can be
referenced by this property. E.g. a trust service provider can have issued mul�ple
tokens and allows the user to iden�fy the required one using this property.

Authen�ca�on object proper�es:

Name Presence Descrip�on

value REQUIRED The concrete password value.

Example I authen�ca�on type:

Example I authen�ca�on object:

Example II authen�ca�on type:

Example II authen�ca�on object:

8.3.1.4 Password, out of band response

The PasswordOOB indicates that by some unspecified mechanism an authen�ca�on object is sent to
the service provider.

This authen�ca�on object type allows for the defini�on of - SMS, phone or email authoriza�on -
Provider-specific authoriza�on without user agent interven�on

Authen�ca�on type proper�es:

{
    "type": "Password",  
    "id": "PIN",  
    "label": "PIN",  
    "format" : "N"  
}

{
    "id": "PIN",  
    "value": "1234"  
}

{
    "type": "Password",  
    "id": "OTP",  
    "label": "OTP",  
    "generator" : "b23",
    "format" : "A"  
}

{
    "id": "OTP",  
    "value": "3rfd45s"  
}



Name Presence Value Descrip�onName Presence Value Descrip�on

type REQUIRED “PasswordOOB”

generator OPTIONAL String If a client side device or algorithm is needed to derive the password, it can be
referenced by this property. E.g. a trust service provider can have issued
mul�ple tokens and allows the user to select one of them using this property.

Authen�ca�on object proper�es:

Name Presence Descrip�on

-

An empty authen�ca�on object is required to indicate to the server that some out-of-band data
must be acquired for this authoriza�on.

Example authen�ca�on type:

Example authen�ca�on object:

8.3.1.5 ChallengeResponse, in band response

The authoriza�on process may be based on a challenge response protocol where the response is
created by a client side mechanism. The mechanism itself is out of scope for this specifica�on. The
response is then sent via creden�als/authorize in-band.

This is typically used where - the user is in possession of a token that requires input of a challenge
and provides a OTP that needs to be sent to the service as a response. - A literal challenge is sent to
the user via SMS, email or other out of band channel to be sent to the service as a response.

Authen�ca�on type proper�es:

Name Presence Value Descrip�on

type REQUIRED “ChallengeResponse”

format OPTIONAL “A”|“N” Specifies the format of the password: - “A”: alphanumeric text; allowed
characters: A-Z | a-z | 0-9 - “N”: numeric text If omi�ed, any character is
allowed.

generator OPTIONAL String If a client side device or algorithm is needed to derive the password, it can
be referenced by this property. E.g. a trust service provider may have
issued mul�ple tokens and allows the user to select one of them using this
property.

Authen�ca�on object proper�es:

Name Presence Descrip�on

{
    "type": "PasswordOOB",  
    "id": "PIN2",  
    "label": "PIN2"  
}

{
    "id": "PIN2"  
}



Name Presence Descrip�on

value REQUIRED The concrete response value.

This authen�ca�on object type requires the signature applica�on to request a challenge from the
service provider using creden�als/getChallenge. The creden�als/getChallenge method needs the id
of the authen�ca�on object to decide which challenge to generate. The reply is either - the
challenge itself, using a HTTP status code 200. In this case, the signature applica�on is required to
display the challenge in order to inform the user and prepare her to derive the response. - A HTTP
status code 201. The challenge is sent out of band to the user. The signature applica�on only
provides means to enter the response for the user.

Example authen�ca�on type

Example authen�ca�on object

8.3.1.6 ChallengeResponse, out of band response

The authoriza�on process is based on a challenge response protocol where the response is created
by a client-side mechanism. The mechanism itself is out of scope for this specifica�on. The response
is then sent via some out of band mechanism that is again outside the scope of this specifica�on.

Authen�ca�on type proper�es:

Name Presence Value Descrip�on

type REQUIRED “ChallengeResponseOOB”

generator OPTIONAL String If a client side device or algorithm is needed to derive the password, it
can be referenced by this property. E.g. a trust service provider may
have issued mul�ple tokens and allows the user to select one of them
using this property.

Authen�ca�on object proper�es:

Name Presence Descrip�on

There is no data sent in band.

This authen�ca�on object type requires the signature applica�on to request a challenge using
creden�als/getChallenge. The creden�als/getChallenge method needs the id of the authen�ca�on
object to decide which challenge to generate. The reply is either - the challenge itself, using a HTTP
status code 200. In this case, the signature applica�on is required to display the challenge in order to
inform the user and prepare him to derive the response. - A HTTP status code 201 The challenge is
sent out of band to the user. The signature applica�on only provides means to enter the response
for the user.

{
    "type": “ChallengeResponse”,  
    "id": “OTP”.  
    "label": “OTP”  
}

{
    "id": “OTP”,  
    "value": “sadf8aef”  
}



Example authen�ca�on type

Example authen�ca�on object

An empty authen�ca�on object is required to indicate to the server that some out-of-band data
must be acquired for this authoriza�on.

8.4 OAuth 2.0 Authoriza�on

OAuth 2.0 is an authoriza�on framework that enables applica�ons to obtain access to HTTP based
services. It provides client applica�ons a “secure delegated access” to server resources on behalf of a
resource owner. In the context of this specifica�on, the signature applica�on is the client applica�on.
This allows resource owners to authorize third-party access to their server resources without sharing
their creden�als.

Using the OAuth 2.0 authoriza�on scheme, the signature applica�on will use the remote service’s
authoriza�on server for user authen�ca�on and access authoriza�on. A�er a successful
authen�ca�on and authoriza�on, the authoriza�on server of the remote service will provide the
signature applica�on with an access token that the signing applica�on will use to authorize access to
the remote service’s resources.

The following OAuth 2.0 grant types as defined in RFC 6749 [11] MAY be used:

Authoriza�on Code
Client Creden�als
Refresh Token

The implicit grant SHALL NOT be used, due to security flaws.

Any provider implemen�ng an OAuth 2.0 authoriza�on flow SHALL follow the recommenda�ons
from OAuth 2.0 Security Best Current Prac�ce [20]. The OAuth 2.0 authoriza�on mechanisms can be
used for different use cases, determined by the respec�ve scope.

The following scopes are defined by this specifica�on:

“service” - used to request service authoriza�on
“creden�al” - used to request authoriza�on for crea�ng one or more signatures with a certain
creden�al or fufiling the requirements of a certain signature qualifier.

An access token with the “creden�al” scope can be used instead of a classical “SAD” as obtained via
creden�als/authorize or creden�als/extendTransac�on. Such an access token will be sent to the
remote signing API in the AUTHORIZATION header. For backward compa�bility, it can also be sent as
“SAD” parameter value.

{
    "type": “ChallengeResponseOOB”,  
    "id": “SMS”.  
    "label": “SMS”  
}

{
    "id": “SMS”  
}



An access token with the “creden�al” scope also includes the service authoriza�on for the requests
creden�als/info, signatures/signHash, signatures/signDoc in conjunc�on with the respec�ve
creden�al or for the request signatures/signDoc in conjunc�on with the respec�ve creden�al
qualifier. As a consequence, an applica�on that has obtained an access token for scope “creden�al”
does not need an addi�onal access token with scope “service” in order to use these requests.

This is useful if the applica�on already has all the informa�on required by signature/signDoc or
signature/signHash and wants to save the addi�onal roundtrip for service authoriza�on. Using
signature/signDoc with a signature qualifier to create signatures is one example. In this case, the
signing applica�on does not need to lookup the available cer�ficates before star�ng the creden�al
authoriza�on process.

Note 12: In the course of authorizing the “creden�al” scope, the authoriza�on server authen�cates
the client and conveys the client iden�ty in the respec�ve access token (which is equivalent to
the service authoriza�on).

A remote service can implement a single OAuth 2.0 authoriza�on server suppor�ng all
beforemen�oned scopes (and possibly more) or just some of them.

In order to be able to use an OAuth 2.0 authoriza�on mechanism, the signing applica�on needs to
be in possession of an OAuth client_id valid for the respec�ve OAuth authoriza�on server and
corresponding creden�als. The way this client_id is setup and the client authen�ca�on mechanism
used is out of scope for this specifica�on. Implementa�ons can u�lize any of the client
authen�ca�on methods defined in the IANA “OAuth Token Endpoint Authen�ca�on Methods”
registry established by IETF RFC 7591 [24].

The following sec�ons describe the OAuth 2.0 endpoints supported by this specifica�on and how to
invoke them. No�ce that the Client Creden�al flow is not described separately because it can be
invoked by means of the oauth2/token endpoint, as defined in oauth2/token, using a grant_type
with value “client_creden�als”.

Tokens issued by OAuth 2.0 authoriza�on endpoints SHOULD be revoked by using the authoriza�on
server’s revoca�on endpoint oauth2/revoke, as defined in oauth2/revoke, if supported. Tokens MAY
also be revoked by calling the remote service’s auth/revoke method, as defined in auth/revoke, if
supported.

The info method, as defined in info, provides the signing applica�on with the OAuth endpoints
loca�on informa�on. There are two op�ons for the remote service:

the parameter oauth2 provides a base URL for all OAuth 2.0 endpoints. The URI path
components of the supported OAuth 2.0 endpoints specified in oauth2/authorize,
oauth2/pushed_authorize, oauth2/token, and oauth2/revoke SHALL be concatenated to the
OAuth 2.0 base URI.
the parameter oauth2Issuer provides the issuer URL of authoriza�on server. The signing
applica�on SHALL obtain all endpoint URLs and further metadata about the OAuth
authoriza�on server as specified in IETF RFC 8414 “OAuth 2.0 Authoriza�on Server Metadata”
[23]. This prevents security (trustworthiness of endpoints) and opera�onal (endpoints change)
issues.

Note 13: OAuth in conjunc�on with the authoriza�on code flow gives the authoriza�on server full
screen control in the course of the authoriza�on process. This allows the authoriza�on server to
u�lize user authen�ca�on means at its own discre�on without the need for this specifica�on to



cater for certain authen�ca�on means. This, for example, allows authoriza�on servers to u�lize
FIDO/WebAuth [i.11] for strong and (op�onally) password less authen�ca�on. The
authoriza�on server may use the WebAuthn API as exposed by the user agent to authen�cate
the user based on the keys maintained in the pla�orm or external authen�cator.

8.4.1 Restricted access to authoriza�on servers

OAuth 2.0 authoriza�on frameworks typically offer an open and unrestricted authoriza�on endpoint.
In the context of the authoriza�on server of a remote service, this means that a user will have no
restric�ons while accessing the oauth2/authorize endpoint, as defined in oauth2/authorize.

However, a remote service may need to restrict users from accessing its authoriza�on server. There
are two common cases when a restric�on would be desirable: with remote services connected to
Corporate Iden�ty Management services or connected to public Electronic Iden�ty (eID)
frameworks. In the former case, the remote service may be required to prevent access to users that
are not affiliated with the Corporate, in the la�er the remote service may be restricted to avoid
abuse by unauthorized users.

To restrict access to the authoriza�on server of a remote service, this specifica�on introduces the
addi�onal account_token parameter to be used when calling the oauth2/authorize endpoint. This
parameter contains a secure token designed to authen�cate the authoriza�on request based on an
Account ID that SHALL be uniquely assigned by the signature applica�on to the signing user or to the
user’s applica�on account.

In case a RSSP wants to provide restricted access to its authoriza�on server, it SHOULD register in
advance the Account ID of the authorized users that need to have access to the oauth2/authorize
endpoint. 
The means and ac�ons required to exchange and register an Account ID between users and the RSSP
are out of the scope of this specifica�on.

The account_token parameter is based on a JSON Web Token (JWT), defined as follows, according to
the RFC 7519 [16]:

JWT_Header

JWT_Payload

account_token = base64UrlEncode(<JWT_Header>) + "." + 
                base64UrlEncode(<JWT_Payload>) + "." + 
                base64UrlEncode(<JWT_Signature>)

<JWT_Header> = {  
   "typ": "JWT",  
   "alg": "HS256"  
}

<JWT_Payload> = {  
   "sub": <Account_ID>,                  //Account ID  
   "iat": <Unix_Epoch_Time>,             //Issued At Time  
   "jti": <Token_Unique_Identifier>,     //JWT ID  
   "iss": <Signature_Application_Name>,  //Issuer  
   "azp": <OAuth2_client_id>             //Authorized presenter  
}



JWT_Signature

Parameters

Parameter Presence Value Descrip�on

typ REQUIRED String 
JWT

The Header Parameter used to indicate that this object is a JSON Web Token (JWT)
according to RFC 7519 [16] Sec�on 5.1.

alg REQUIRED String 
HS256

The Header Parameter used to indicate that the algorithm of the signature of the JWT is
HMAC using SHA-256 according to RFC 7518 [15] Sec�on 3.1.

sub REQUIRED String The client-defined Account ID that allows the RSSP to iden�fy the account or user
ini�a�ng the authoriza�on transac�on.

iat REQUIRED Number The Unix Epoch �me when the account_token was issued. The value is used to
determine the age of the JWT. The RSSP SHOULD define the life�me of the JWT and
SHALL accept or reject an account_token based on its own expira�on policy.

j� REQUIRED String A unique iden�fier for the JWT. This protects from replay a�acks performed by reusing
the same account_token .

iss OPTIONAL String Contains the name of the issuer of the token (e.g. the commercial name of the
signature applica�on).

azp REQUIRED String Contains the unique “client ID” previously assigned to the sgnature applica�on by the
remote service.

Implementa�on notes

The RSSP SHALL securely share the OAuth 2.0 client_id and client_secret with the signature
applica�on as part of the OAuth 2.0 configura�on (see OAuth 2.0 Authoriza�on).

The JWT_signature required to generate the account_token SHALL be calculated with the
HMAC func�on, using as shared secret the SHA256 hash of the OAuth 2.0 client_secret.

The signature applica�on SHOULD register in advance with the RSSP the list of Account ID
parameters associated with those users that are authorized to access a restricted
authoriza�on server.

Example

…?
account_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiI3S1lCckpBLWtCOTF5T1Rld1JZRz
h5SGdzN3EtbzR1NiIsImlhdCI6MTUzNzAxMjgwMCwianRpIjoiYjgzZmY4OWEtZWQzZi00NjgxLTgyOGQtNzE2MGI
5MTNjYTcyIiwiaXNzIjoiQ1NDIFNpZ25hdHVyZSBBcHBsaWNhdGlvbiIsImF6cCI6ImE4NzliNDE5LThmZWQtNDcy
ZS05Yzk3LTJmODk3NTIxODU3ZSJ9.SEwD3KGDPFX-8IIJE7pC_RJ-0wdOVinEPTHmKKVQb6E&…

8.4.2 oauth2/authorize

Descrip�on

<JWT_Signature> = HMACSHA256(  
   base64UrlEncode(<JWT_Header>) + "." +  
   base64UrlEncode(<JWT_Payload>),  
   SHA256(<OAuth2_client_secret>)  
)



This is the OAuth 2.0 authoriza�on endpoint. It SHALL process OAuth 2.0 authoriza�on requests
using the Authoriza�on Code flow as described in Sec�on 1.3.1 of RFC 6749 [11].

This endpoint can be used in two modes. The applica�on either sends all authoriza�on request
parameters to this endpoint, which is the classical mode as defined in RFC 6749 [11]. Alterna�vely,
the applica�on can first push the authoriza�on request payload to the authoriza�on server via the
“pushed authoriza�on request endpoint” as defined in IETF Dra� dra�-ie�-oauth-par [28] and use
the request URI produced as parameter to the authoriza�on endpoints. This sec�on describes the
authorizaton request parameters for both modes. The pushed authoriza�on endpoint and the use of
the pushed authoriza�on request mode is described in oauth2/pushed_authorize.

The authoriza�on server MAY support scopes “service” or “creden�al” for service and creden�al
authoriza�on, respec�vely. The authoriza�on server MAY also support use of “authoriza�on_details”
as defined in IETF Dra� dra�-ie�-oauth-rar [27] in conjunc�on with the authoriza�on detail type
“creden�al” for creden�al authoriza�on. In case of “creden�al” authoriza�on, a signing applica�on
SHALL either use the scope value “creden�al” (in conjunc�on with the details of the transac�on in
the URI parameters) or the authoriza�on details type “creden�al” in a certain transac�on (in which
case the transac�on details are contained in the authoriza�on details object).

Note 14: Be aware that oauth2/authorize is designed as an unauthen�cated endpoint. A provider
offering this endpoint SHOULD protect the service from abuse and customer’s risk. This is
especially true when used for creden�al authoriza�on. The authoriza�on server MAY need to
(re-)authen�cate the user through the user agent before establishing a different, poten�ally
cost-genera�ng channel to the user (e.g. sending a push no�fica�on). A provider MAY apply
prac�ces like session cookies or HTML5 session storage in order to retain a good user
experience, while addressing and mi�ga�ng related security issues. A provider MAY also
implement individual access authoriza�on mechanisms on the oauth2/authorize endpoint. The
means for achieving this are beyond the scope of this specifica�on.

Input

Note 15: Although RFC 3986 [3] doesn’t define length limits on URIs, there are prac�cal limits
imposed by browsers and web servers. It is RECOMMENDED not to exceed an URI length of
2083 characters for maximum interoperability.

Input parameters defined in OAuth 2.0

Parameter Presence Value Defined
by

Descrip�on

response_type REQUIRED String RFC 6749
[11]

see RFC 6749 [11], sec�on 4.1.1. The value SHALL be “code”.

client_id REQUIRED String RFC 6749
[11]

see RFC 6749 [11], sec�on 4.1.1.

redirect_uri REQUIRED 
Condi�onal

String RFC 6749
[11]

The URL where the user will be redirected a�er the
authoriza�on process has completed. The authoriza�on is
reqired to exactly match the parameter value with the pre-
registered values. Only a valid URI pre-registered with the
remote service SHALL be passed. 

If omi�ed, the remote service will use the default redirect URI
pre-registered by the signature applica�on.



Parameter Presence Value Defined
by

Descrip�on

scope OPTIONAL String RFC 6749
[11]

The scope of the access request as described by Sec�on 3.3 of
RFC 6749 [11]. This specifica�on defines the following scopes:

“service”: it SHALL be used to obtain an authoriza�on
code suitable for service authoriza�on. 
“creden�al”: it SHALL be used to obtain an
authoriza�on code suitable for creden�als
authoriza�on. The scope of the request might be
further detailed using request parameters as defined
below. 

The parameter is OPTIONAL. If neither the “scope” nor the
“authoriza�on_details” parameter is provided, the
authoriza�on server SHALL use a default scope of “service”.

authoriza�on_details OPTIONAL String IETF
Dra�-ie�-
oauth-rar
[27]

The details of the access request as described in IETF Dra�-ie�-
oauth-rar [27]. This specifica�on defines the following
authoriza�on details type:

“creden�al”: it SHALL be used to obtain an
authoriza�on code suitable for creden�als
authoriza�on. 

The parameter is OPTIONAL. If this parameter is used, all
values relevant for creden�al authoriza�on SHALL be passed in
this object. The scope “creden�al” as well as any request
parameter relevant for creden�al authoriza�on SHALL NOT be
used in this case.

code_challenge REQUIRED String RFC 7636
[25]

Cryptographic nonce binding the transac�on to a certain user
agent, used to detect code replay and CSRF a�acks. See IETF
RFC 7636 [25] and the IETF OAuth Security BCP [20], sec�on
2.2, for details.

code_challenge_method OPTIONAL String RFC 7636
[25]

Code verifier transforma�on method as defined in IETF RFC
7636 [25], defaults to plain. The recommended value is S256.

state OPTIONAL String RFC 6749
[11]

see RFC 6749 [11], sec�on 4.1.1.

request_uri REQUIRED
Condi�onal

String IETF
Dra�-ie�-
oauth-par
[28]

URI poin�ng to a pushed authoriza�on request previously
uploaded by the client.  
This parameter SHALL only be used in conjunc�on with the 
client_id. All other parameters SHALL NOT be combined with
this parameter.

Input parameters defined in this specifica�on

This specifica�on defines the following addi�onal parameters:

Parameter Presence Value Descrip�on

lang OPTIONAL String Request a preferred language according to RFC 5646 [9]. 
If specified, the authoriza�on server SHOULD render the authoriza�on web
page in this language, if supported. If omi�ed and an Accept-Language header
is passed, the authoriza�on server SHOULD render the authoriza�on web page
in the language declared by the header value, if supported. 
The authoriza�on server SHALL render the web page in its own preferred
language otherwise. 

creden�alID REQUIRED
Condi�onal

String The iden�fier associated to the creden�al to authorize. It SHALL be used only if
the scope of the OAuth 2.0 authoriza�on request is “creden�al”. Be aware that
this parameter value may contain characters that are reserved, unsafe or
forbidden in URLs and therefore SHALL be url-encoded by the signature
applica�on.



Parameter Presence Value Descrip�on

signatureQualifier REQUIRED
Condi�onal

String This parameter contains the symbolic iden�fier determining the kind of
signature to be created as defined in signatures/signDoc. It SHALL be used only
if the scope of the OAuth 2.0 authoriza�on request is “creden�al” and if there
is no parameter “creden�alID” present.

numSignatures REQUIRED
Condi�onal

Number The number of signatures to authorize. Mul�-signature transac�ons can be
obtained by using a combina�on of array of hash values and by calling mul�ple
�mes the signatures/signHash method, as defined in signatures/signHash. It
SHALL be used only if the scope of the OAuth 2.0 authoriza�on request is
“creden�al”.

hashes REQUIRED
Condi�onal

String One or more base64url-encoded hash values to be signed. It allows the server
to bind the access token to the hash, thus preven�ng an authoriza�on to be
used to sign a different content. It SHALL be used only if the scope of the
OAuth 2.0 authoriza�on request is “creden�al”. It SHALL be used if the SCAL
parameter returned by creden�als/info method, as defined in
creden�als/info, for the current creden�alID is “2”, otherwise it is OPTIONAL.
Mul�ple hash values can be passed as comma separated values,
e.g. oauth2/authorize?hash=dnN3ZX.. .ZmRm,ZjIxM3… Z2Zk,… 
The order of mul�ple values does not have to match the order of hashes
passed to signatures/signHash method, as defined in signatures/signHash.

hashAlgorithmOID REQUIRED
Condi�onal

String String containing the OID of the hash algorithm used to generate the hashes.

descrip�on OPTIONAL String A free form descrip�on of the authoriza�on transac�on in the lang language.
The maximum size of the string is 500 characters. It can be useful to provide
some hints about the occurring transac�on.

account_token OPTIONAL String An account_token as defined in Restricted access to authoriza�on servers. It
MAY be required by a RSSP if their authoriza�on server has a restricted access.
The value is a JSON Web Token (JWT) according to RFC 7519 [16].

clientData OPTIONAL String Arbitrary data from the signature applica�on. It can be used to handle a
transac�on iden�fier or other applica�on-spe cific data that may be useful for
debugging purposes. WARNING: this parameter MAY expose sensi�ve data to
the remote service. Therefore it SHOULD be used carefully.

Authoriza�on details type “creden�al”

The authoriza�on details type credential allows applica�ons to pass the details of a certain
creden�al authoriza�on in a single JSON object. It consists of the following field:

Field Presence Value Descrip�on

type REQUIRED String authoriza�on details type iden�fier. It must be set to credential.

creden�alID REQUIRED
Condi�onal

String see defini�on above (Input parameters).

signatureQualifier REQUIRED
Condi�onal

String see defini�on above (Input parameters).

documentDigests REQUIRED JSON
array

An array composed of entries for every document to be signed. This applies for
both cases, where are document is signed or a digest is signed. Every entry is
composed of the following elements:

“hash”: REQUIRED Condi�onal String containing the actual Base64-
encoded octet-representa�on of the hash of the document.
“label”: String containing a human-readable descrip�on of the respec�ve
document. The AS will use the label element in the user consent to
designate the document.

hashAlgorithmOID REQUIRED String String containing the OID of the hash algorithm used to generate the hashes
listed in documentDigests.



Field Presence Value Descrip�on

loca�ons OPTIONAL JSON
array

Element as defined in IETF Dra�-ie�-oauth-rar [27] designa�ng the loca�ons of
the API the access token issued in a certain OAuth transac�on shall be used.
Might be used by deployments to iden�fy the RSSP.

If the creden�al authoriza�on values are provided via this authoriza�on details, then they SHALL
NOT be provided within the other request parameters. The authoriza�on details SHOULD be used,
since it allows a more detailes informa�on on the documents to be signed.

Output

A�er a successful authoriza�on, the authoriza�on server SHALL redirect the user-agent by sending
the HTTP/1.1 302 Found response with a Loca�on header containing the URI specified by the
redirect_uri parameter and adding the following values as query component using the
“applica�on/x-www-form-urlencoded” format.

A�ribute Presence Value Descrip�on

code REQUIRED String The authoriza�on code generated by the authoriza�on server.
It SHALL be bound to the client iden�fier and the redirec�on
URI. It SHALL expire shortly a�er it is issued to mi�gate the risk
of leaks. The signature applica�on cannot use the value more
than once.

state REQUIRED 
Condi�onal 

String Contains the arbitrary data from the signature applica�on that
was specified in the state a�ribute of the input request. It
SHALL be returned when specified in the request.

error REQUIRED 
Condi�onal 

String 
invalid_request |
access_denied |
unsupported_response_type
| invalid_scope |
server_error |
temporarily_unavailable 

A single error code string from the following list: 

“invalid_request”: it SHALL be used if the request is
missing a required parameter. 
“access_denied”: it SHALL be used if the server denied
the request. 
“unsupported_response_ty pe”: it SHALL be used if the
server does not support the required response type. 
“invalid_scope”: it SHALL be used if the requested
scope is invalid, unknown, or malformed. 
“server_error”: it SHALL be used if the server
encountered an unexpected condi�on that prevented it
from fulfilling the request. 
“temporarily_unavailable” : it SHALL be used if the
server is currently unable to handle the request due to
temporary overload or maintenance . 

It SHALL be returned only in case of an error. 

error_descrip
�on

OPTIONAL String Human-readable text providing addi�onal error informa�on. It
MAY be returned only in case of an error.

error_uri OPTIONAL String A URI iden�fying a human-readable web page with informa�on
about the error. It MAY be returned only in case of an error.

Sample Request (Service authoriza�on)

GET https://www.domain.org/oauth2/authorize? 
  response_type=code& 
  client_id=<OAuth2_client_id>& 
  redirect_uri=<OAuth2_redirect_uri>& 
  scope=service& 
  code_challenge=K2-ltc83acc4h0c9w6ESC_rEMTJ3bww-uCHaoeK1t8U& 
  code_challenge_method=S256& 



  lang=en-US& 
  state=12345678

Sample Response (Service authoriza�on)

HTTP/1.1 302 Found 
Location: <OAuth2_redirect_uri>? 
  code=FhkXf9P269L8g& 
  state=12345678

Sample Request (Creden�al authoriza�on)

GET https://www.domain.org/oauth2/authorize? 
  response_type=code& 
  client_id=<OAuth2_client_id>& 
  redirect_uri=<OAuth2_redirect_uri>& 
  scope=credential& 
  code_challenge=K2-ltc83acc4h0c9w6ESC_rEMTJ3bww-uCHaoeK1t8U& 
  code_challenge_method=S256& 
  credentialID=GX0112348& 
  numSignatures=1& 
  hashes=MTIzNDU2Nzg5MHF3ZXJ0enVpb3Bhc2RmZ2hqa2zDtnl4& 
  hashAlgorithmOID=2.16.840.1.101.3.4.2.1&state=12345678

Sample Response (Creden�al authoriza�on)

HTTP/1.1 302 Found 
Location: <OAuth2_redirect_uri>?code=HS9naJKWwp901hBcK348IUHiuH8374& 
  state=12345678

Sample Request (Creden�al authoriza�on with signature qualifier)

GET https://www.domain.org/oauth2/authorize? 
  response_type=code& 
  client_id=<OAuth2_client_id>& 
  redirect_uri=<OAuth2_redirect_uri>& 
  scope=credential& 
  code_challenge=K2-ltc83acc4h0c9w6ESC_rEMTJ3bww-uCHaoeK1t8U& 
  code_challenge_method=S256& 
  signatureQualifier=eu_eidas_qes& 
  numSignatures=1& 
  hashes=MTIzNDU2Nzg5MHF3ZXJ0enVpb3Bhc2RmZ2hqa2zDtnl4& 
  hashAlgorithmOID=2.16.840.1.101.3.4.2.1&state=12345678

Sample Response (Creden�al authoriza�on with signature qualifier)

HTTP/1.1 302 Found 
Location: <OAuth2_redirect_uri>?code=HS9naJKWwp901hBcK348IUHiuH8374& 
  state=12345678

Sample Request (Creden�al authoriza�on with signature qualifier via authoriza�on_details)

GET https://www.domain.org/oauth2/authorize? 
  response_type=code& 
  client_id=<OAuth2_client_id>& 
  redirect_uri=<OAuth2_redirect_uri>& 
  code_challenge=K2-ltc83acc4h0c9w6ESC_rEMTJ3bww-uCHaoeK1t8U& 
  code_challenge_method=S256& 
  &state=12345678 



  
&authorization_details=%5B%7B%22type%22:%22credential%22,%22signatureQualifier%22:%22eu_e
idas_qes%22,%22documentDigests%22:%5B%7B%22hash%22:%22sTOgwOm+474gFj0q0x1iSNspKqbcse4Ieiq
lDg/HWuI=%22,%22label%22:%22Example%20Contract%22%7D,%7B%22hash%22:%22HZQzZmMAIWekfGH0/ZK
W1nsdt0xg3H6bZYztgsMTLw0=%22,%22label%22:%22Example%20Terms%20of%20Service%22%7D%5D,%22ha
shAlgorithmOID%22:%222.16.840.1.101.3.4.2.1%22%7D%5D

Decoded authorization_details parameter

Sample Response (Creden�al authoriza�on with signature qualifier)

HTTP/1.1 302 Found 
Location: <OAuth2_redirect_uri>?code=HS9naJKWwp901hBcK348IUHiuH8374& 
  state=12345678

Error Response

HTTP/1.1 302 Found 
Location: <OAuth2_redirect_uri>?error=invalid_request& 
  error_description=Invalid%20Authorization%20Code&state=12345678

8.4.3 oauth2/pushed_authorize

This is the OAuth 2.0 pushed authoriza�on endpoint as defined in IETF Dra� dra�-ie�-oauth-par
[28]. It allows clients to push the payload of an OAuth 2.0 authoriza�on request to the authoriza�on
server via a direct request and provides them with a request URI that is used as reference to the data
in a subsequent call to the authoriza�on endpoint (oauth2/authorize).

This mechanisms protects the contents of the authoriza�on request from modifica�on and
eavesdropping, allows for prac�cally arbitrary request sizes, and enables the authoriza�on server to
authen�cate the signing applica�on in advance of the authoriza�on process.

The applica�on sends the parameters as defined in oauth2/authorize (except the request_uri
parameter) to the pushed authoriza�on endpoint using a HTTP POST request. The applica�on is
required to authen�cate towards the authoriza�on server using the mechanism used in the context
of token requests (see oauth2/token). The authoriza�on server will respond with a request URI that
the applica�on sends to the authoriza�on endpoint along with its client_id instead of the
authoriza�on parameters.

[
   {  
      "type":"credential",  
      "signatureQualifier":"eu_eidas_qes",  
      "documentDigests":[  
         { 
            "hash":"sTOgwOm+474gFj0q0x1iSNspKqbcse4IeiqlDg/HWuI=", 
            "label":"Example Contract" 
         }, 
         { 
            "hash":"HZQzZmMAIWekfGH0/ZKW1nsdt0xg3H6bZYztgsMTLw0=", 
            "label":"Example Terms of Service" 
         } 
      ],  
      "hashAlgorithmOID":"2.16.840.1.101.3.4.2.1"  
   }  
]



Sample Pushed Authoriza�on Request (Service authoriza�on)

POST oauth2/pushed_authorize HTTP/1.1 
Host: www.domain.org 
Content-Type: application/x-www-form-urlencoded 
Authorization: Basic czZCaGRSa3F0Mzo3RmpmcDBaQnIxS3REUmJuZlZkbUl3 
 
response_type=code& 
client_id=<OAuth2_client_id>& 
redirect_uri=<OAuth2_redirect_uri>& 
scope=service& 
code_challenge=K2-ltc83acc4h0c9w6ESC_rEMTJ3bww-uCHaoeK1t8U& 
code_challenge_method=S256& 
lang=en-US& 
state=12345678

Sample Pushed Authoriza�on Request (Creden�al authoriza�on with authoriza�on details)

POST oauth2/pushed_authorize HTTP/1.1 
Host: www.domain.org 
Content-Type: application/x-www-form-urlencoded 
Authorization: Basic czZCaGRSa3F0Mzo3RmpmcDBaQnIxS3REUmJuZlZkbUl3 
 
response_type=code& 
client_id=<OAuth2_client_id>& 
redirect_uri=<OAuth2_redirect_uri>& 
code_challenge=K2-ltc83acc4h0c9w6ESC_rEMTJ3bww-uCHaoeK1t8U& 
code_challenge_method=S256& 
&state=12345678
&authorization_details=%5B%7B%22type%22:%22credential%22,%22signatureQualifier%22:%22eu_e
idas_qes%22,%22documentDigests%22:%5B%7B%22hash%22:%22sTOgwOm+474gFj0q0x1iSNspKqbcse4Ieiq
lDg/HWuI=%22,%22label%22:%22Example%20Contract%22%7D,%7B%22hash%22:%22HZQzZmMAIWekfGH0/ZK
W1nsdt0xg3H6bZYztgsMTLw0=%22,%22label%22:%22Example%20Terms%20of%20Service%22%7D%5D,%22ha
shAlgorithmOID%22:%222.16.840.1.101.3.4.2.1%22%7D%5D

Sample Pushed Authoriza�on Response (Service authoriza�on)

HTTP/1.1 201 Created 
Cache-Control: no-cache, no-store 
Content-Type: application/json 
 
{ 
   "request_uri": "urn:example:bwc4JK-ESC0w8acc191e-Y1LTC2", 
   "expires_in": 90 
}

Sample authoriza�on Request (with request_uri)

GET /authorize?client_id=<OAuth2_client_id> 
       &request_uri=urn%3Aexample%3Abwc4JK-ESC0w8acc191e-Y1LTC2 HTTP/1.1 
     Host: as.example.com

8.4.4 oauth2/token

Descrip�on

This is the OAuth token endpoint. It is used to obtain an OAuth 2.0 bearer access token from the
authoriza�on server by passing either the client creden�als pre-assigned by the authoriza�on server
to the signature applica�on, or the authoriza�on code or refresh token returned by the



authoriza�on server a�er a successful user authen�ca�on, along with the client ID and client secret
in possession of the signature applica�on. This method SHALL be used only in case of an
Authoriza�on Code flow as described in Sec�on 1.3.1 of RFC 6749 [11], in case of Client Creden�al
flow as described in Sec�on 1.3.4 of RFC 6749 [11] or in case of Refresh Token flow as described in
Sec�on 1.5 of RFC 6749 [11]. No�ce that the Client Creden�al flow and Refresh Token flow can be
used only for service authoriza�on.

For confiden�al clients, implementa�ons MAY u�lize any of the client authen�ca�on methods
defined in the IANA “OAuth Token Endpoint Authen�ca�on Methods” registry established by IETF
RFC 7591 [24].

This is a non-exhaus�ve list of op�ons:

Passing a pre-issued client secret as a parameter in the request body as described in Sec�on
2.3.1 of RFC 6749 [11].

Applying a pre-issued client secret within the HTTP Basic authen�ca�on scheme as described
in Sec�on 2.3.1 of RFC 6749 [11].

Passing a client asser�on as defined in sec�on 4.2 of RFC 7521 [14].

Using TLS Client authen�ca�on as defined in RFC 8705.

Note 16: oauth2/token does not specify a regular CSC API method, but rather the URI of the OAuth
2.0 Token endpoint. Depending on the discovery method, this URL is either determined by
adding oauth2/token to the authoriza�on server’s base URI or from the authoriza�on server’s
configura�on.

Input

In order to maintain full compa�bility with the OAuth 2.0 standard, the following parameters SHALL
be passed in the HTTP request en�ty-body using the “applica�on/x-www-form-urlencoded” format
with a character encoding of UTF-8.

Note 17: The list of parameters is split between standard parameters that are defined by the OAuth
2.0 framework (see RFC 6749 [11] and RFC 7521 [14]) and parameters that are defined in this
specifica�on. These parameters SHALL be combined in a single query string.

Input parameters defined in OAuth 2.0
Parameter Presence Value Descrip�on

grant_type REQUIRED String 
authoriza�on_code
| client_creden�als
| refresh_token 

The grant type, which depends on the type of OAuth 2.0 flow: 

“authoriza�on_code”: SHALL be used in case of
Authoriza�on Code Grant. 
“client_creden�als”: SHALL be used in case of Client
Creden�als Grant. 
“refresh_token”: SHALL be used in case of Refresh Token
flow. 

code REQUIRED
Condi�onal

String The authoriza�on code returned by the authoriza�on server. It
SHALL be bound to the client iden�fier and the redirec�on URI.
This SHALL be used only when grant_type is
“authoriza�on_code”.



Parameter Presence Value Descrip�on

refresh_token REQUIRED
Condi�onal

String The long-lived refresh token returned from the previous session.
This SHALL be used only when the scope of the OAuth 2.0
authoriza�on request is “service” and grant_type is
“refresh_token” to reauthen�cate the user according to the
method described in Sec�on 1.5 of RFC 6749 [11].

client_id REQUIRED String The client_id as defined in the Input parameter table in
oauth2/authorize.

client_secret REQUIRED 
Condi�onal 

String This is the “client secret” previously assigned to the signature
applica�on by the remote service. It SHALL be passed if the
client is setup to authen�cate with a client secret and does not
use an authoriza�on header. Note: According to RFC 6749 [11]
sec�on 2.3.1., including the client creden�als in the request-
body is NOT RECOMMENDED and SHOULD be limited to clients
unable to directly u�lize the HTTP Basic authen�ca�on scheme.

client_asser�on REQUIRED 
Condi�onal 

String The asser�on being used to authen�cate the client. Specific
serializa�on of the asser�on is defined by profile documents. 
It SHALL be passed if the client is setup for authen�ca�on with
client asser�ons. 

client_asser�on_type REQUIRED 
Condi�onal 

String The format of the asser�on as defined by the authoriza�on
server. The value will be an absolute URI. 
It SHALL be passed if a client asser�on is used. 

redirect_uri REQUIRED
Condi�onal

String The URL where the user was redirected a�er the authoriza�on
process completed. It is used to validate that it matches the
original value previously passed to the authoriza�on server. This
SHALL be used only if the redirect_uri parameter was included in
the authoriza�on request, and their values SHALL be iden�cal.

authoriza�on_details REQUIRED
Condi�onal

String MUST be present if the authorization_details parameter was
used in the authoriza�on request. It contains the authoriza�on
details as approved during the authoriza�on process. In case a
signature qualifier was used in the request and resolved for a
creden�al ID in the course of the authoriza�on process, this
object will contain the creden�al ID.

Input parameters defined in this specifica�on

Parameter Presence Value Descrip�on

clientData OPTIONAL String The clientData as defined in the Input parameter table in oauth2/authorize.

Output

This method returns the following values using the “applica�on/json” format:

Output parameters defined in OAuth 2.0

A�ribute Presence Value Descrip�on

access_token REQUIRED String The short-lived access token to be used depending on the scope of the OAuth 2.0
authoriza�on request. 
This access token as the value of the “Authoriza�on: Bearer” in the HTTP header of
the subsequent API requests within the same session. 
A signing applica�on MAY also pass an access tokens with scope “creden�al” as the
value of the SAD parameter when invoking the signatures/signHash or
signatures/signDoc methods, as defined in signatures/signHash. 



A�ribute Presence Value Descrip�on

refresh_token OPTIONAL String The long-lived refresh token used to re-authen�cate the user on the subsequent
session based on the method described in Sec�on 1.5 of RFC 6749 [11]. 
The presence of this parameter is controlled by the user and is allowed only when
the scope of the OAuth 2.0 authoriza�on request is “service”. 
In case grant_type is “refresh_token” the authoriza�on server MAY issue a new
refresh token, in which case the client SHALL discard the old refresh token and
replace it with the new refresh token. 

token_type REQUIRED String Access token type as defined in RFC 6749 [11]. Default is “Bearer”, other token types
are defined in the “OAuth Access Token Types” established by RFC 6749 [11]. 

expires_in OPTIONAL Number The life�me in seconds of the service access token. If omi�ed, the default expira�on
�me is 3600 sec. (1 hour).

Note 18: The life�me of the refresh token is determined by the RSSP.

Output parameters defined in this specifica�on

A�ribute Presence Value Descrip�on

creden�alID OPTIONAL String The iden�fier associated to the creden�al authorized in the corresponding authoriza�on
request. This response parameter MAY be present in case the scope credential is used
in the authoriza�on request along with the parameter “signatureQualifier” and the
authoriza�on server determined a creden�alID in the authoriza�on process to be used
in subsequent signature opera�ons.

Error Case Status Code Error Error Descrip�on

Missing “client_id” parameter 400 
(bad request) 

invalid_request Missing parameter client_id

Missing “grant_type” parameter 400 
(bad request) 

invalid_request Missing parameter grant_type

Invalid parameter “grant_type” 400 
(bad request) 

invalid_request Invalid parameter grant_type

Missing “code” parameter 400 
(bad request) 

invalid_request Missing parameter code

Missing “refresh_token” parameter 400 
(bad request) 

invalid_request Missing parameter refresh_token

Invalid “client_id” parameter 400 
(bad request) 

invalid_request Invalid parameter client_id

Invalid “code” parameter 400 
(bad request) 

invalid_grant Invalid parameter code

The “redirect_uri” parameter does not match
the redirec�on URI in the authoriza�on
request

400 
(bad request) 

invalid_grant redirect_uri parameter does not
match redirect_uri parameter of
authoriza�on request

Invalid “refresh_token” parameter 400 
(bad request) 

invalid_grant Invalid parameter refresh_token

Refresh token expired 400 
(bad request) 

invalid_grant Refresh token expired

Authoriza�on code invalid or expired 400 
(bad request) 

invalid_grant Authoriza�on code is invalid or
expired

Missing “client_secret” parameter and no
authoriza�on header provided

400 (bad request)
| 401
(unauthorized)

invalid_request Client authoriza�on required



Error Case Status Code Error Error Descrip�on

Invalid “client_secret” parameter 400 
(bad request) 

invalid_request Invalid parameter client_secret

Sample Request (Authoriza�on code flow)

POST oauth2/token HTTP/1.1 
Host: www.domain.org 
Content-Type: application/x-www-form-urlencoded 
 
grant_type=authorization_code& 
code=FhkXf9P269L8g& 
client_id=<OAuth2_client_id>& 
client_secret=<OAuth2_client_secret>& 
redirect_uri=<OAuth2_redirect_uri>

cURL example

curl -i -X POST
     -H "Content-Type: application/x-www-form-urlencoded" 
     -d 'grant_type=authorization_code& 
         code=FhkXf9P269L8g& 
         client_id=<OAuth2_client_id>& 
         client_secret=<OAuth2_client_secret>& 
         redirect_uri=<OAuth2_redirect_uri>' 
    https://www.domain.org/oauth2/token

Sample Response (for service scope)

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8 
{ 
   "access_token": "4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA", 
   "refresh_token": "_TiHRG-bAH3XlFQZ3ndFhkXf9P24/CKN69L8gdSYp5_pw", 
   "token_type": "Bearer", 
   "expires_in": 3600 
}

Sample Response (for creden�al scope)

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8 
{ 
   "access_token": 
   "3XlFQZ3ndFhkXf9P24/CKN69L8gdSYp5H3XlFQZ3ndFhkXf9P2", 
   "token_type": "Bearer", 
   "expires_in": 300 
}

Sample Response (for creden�al scope with signature qualifier and AS selected creden�al)

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8 
{ 
   "access_token": 
   "3XlFQZ3ndFhkXf9P24/CKN69L8gdSYp5H3XlFQZ3ndFhkXf9P2", 
   "token_type": "Bearer", 
   "expires_in": 300, 



   "credentialID": "GX0112348" 
}

Sample Response (for creden�al authoriza�on details with signature qualifier and AS selected
creden�al)

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8 
{ 
   "access_token":"3XlFQZ3ndFhkXf9P24/CKN69L8gdSYp5H3XlFQZ3ndFhkXf9P2", 
   "token_type":"Bearer", 
   "expires_in":300, 
   "authorization_details":[ 
      { 
         "type":"credential", 
         "credentialID":"GX0112348", 
         "documentDigests":[ 
            { 
               "hash":"sTOgwOm+474gFj0q0x1iSNspKqbcse4IeiqlDg/HWuI=", 
               "label":"Example Contract" 
            }, 
            { 
               "hash":"HZQzZmMAIWekfGH0/ZKW1nsdt0xg3H6bZYztgsMTLw0=", 
               "label":"Example Terms of Service" 
            } 
         ], 
         "hashAlgorithmOID":"2.16.840.1.101.3.4.2.1" 
      } 
   ] 
}

Sample Request (Refresh token flow)

POST oauth2/token HTTP/1.1 
Host: www.domain.org 
Content-Type: application/x-www-form-urlencoded 
 
grant_type=refresh_token& 
refreshToken=_TiHRG-bA+H3XlFQZ3ndFhkXf9P24%2FCKN69L8gdSYp5_pw& 
client_id=<OAuth2_client_id>& 
client_secret=<OAuth2_client_secret>& 
redirect_uri=<OAuth2_redirect_uri>

cURL example

curl -i -X POST
     -H "Content-Type: application/x-www-form-urlencoded" 
     -d 'grant_type=refresh_token& 
         refreshToken=_TiHRG-bA+H3XlFQZ3ndFhkXf9P24%2FCKN69L8gdSYp5_pw& 
         client_id=<OAuth2_client_id>& 
         client_secret=<OAuth2_client_secret>& 
         redirect_uri=<OAuth2_redirect_uri>' 
     https://www.domain.org/oauth2/token

Sample Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8 
{ 
   "access_token": "K7x-0Lj7Wwdt4pwH3XlFQZ3ndFhkXf9P2_TiHRQaxZ9kJ0", 
   "token_type": "Bearer", 



   "expires_in": 3600 
}

8.4.5 oauth2/revoke

Descrip�on

Revoke an access token or refresh token that was obtained from the authoriza�on server, as
described in RFC 7009 [13]. This method may be used to enforce the security of the remote service.
When the signature applica�on needs to terminate a session, it is RECOMMENDED to invoke this
method to prevent further access by reusing the token. 
This method allows the signature applica�on to invalidate its tokens according to the following
approach:

If the token passed to the request is a refresh_token, then the authoriza�on server SHALL
invalidate the refresh token and it SHOULD also invalidate all access tokens based on the same
authoriza�on grant.

If the token passed to the request is an access_token, then the authoriza�on server SHALL
invalidate the access token and it SHALL NOT revoke any exis�ng refresh token based on the
same authoriza�on grant.

The invalida�on of the token takes place immediately, and the token cannot be used again a�er its
revoca�on. As a token issued in the process of creden�al authoriza�on is automa�cally invalidated
as soon as its usage limit is reached, a client does not have to revoke the corresponding token a�er
use. However, a provider SHOULD support the revoca�on of such a token before reaching the usage
limit.

A confiden�al client SHALL authen�cate with the authoriza�on server using its client authen�ca�on
method.

Note 19: oauth2/revoke does not specify a regular CSC API method, but rather the URI of the OAuth
2.0 Token endpoint. Depending on the discovery method, this URL is either determined by
adding oauth/revoke to the authoriza�on server’s base URI or from the authoriza�on server’s
configura�on.

8.4.5.1 Input

In order to maintain full compa�bility with the OAuth 2.0 standard, the following parameters SHALL
be passed in the HTTP request en�ty-body with the authoriza�on endpoint URI using the
“applica�on/x-www-form-urlencoded” format with a character encoding of UTF-8.

Note 20: The list of parameters is split between standard parameters that are defined by the OAuth
2.0 framework (see RFC 6749 [11] and RFC 7521 [14]) and parameters that are defined in this
specifica�on. These parameters SHALL be combined in a single query string.

Input parameters defined in OAuth 2.0

Parameter Presence Value Descrip�on

token REQUIRED String The token that the signature applica�on wants to get revoked.



Parameter Presence Value Descrip�on

token_type_hint OPTIONAL String 
access_token
|
refresh_token 

Specifies an op�onal hint about the type of the token submi�ed for
revoca�on. If the parameter is omi�ed, the authoriza�on server
SHOULD try to iden�fy the token across all the available tokens.

client_id REQUIRED 
Condi�onal 

String The client_id as defined in the Input parameter table in
oauth2/authorize. It SHALL be passed if no authoriza�on header is
used.

client_secret REQUIRED 
Condi�onal 

String The client_secret as defined in the Input parameter table in
oauth2/token.

client_asser�on REQUIRED 
Condi�onal 

String The client_asser�on as defined in the Input parameter table in
oauth2/token.

client_asser�on_type REQUIRED 
Condi�onal 

String The client_asser�on_type as defined in the Input parameter table in
oauth2/token.

Input parameters defined in this specifica�on

Parameter Presence Value Descrip�on

clientData OPTIONAL String The clientData as defined in the Input parameter table in oauth2/authorize.

Output

This method has no output values and the response returns “No Content” status.

Error Case Status Code Error Error Descrip�on

Missing “token” parameter 400 
(bad request) 

invalid_request Missing parameter token

“token_hint” parameter
present, not equal to
“access_token” nor
“refresh_token”

400 
(bad request) 

invalid_request Invalid parameter token_type_hint

Invalid access_token or
refresh_token

400 
(bad request) 

invalid_request Invalid string parameter token

Unsupported token type 400 
(bad request) 

unsupported_token_type The authoriza�on server does not support the
revoca�on of the presented token type. That
is, the client tried to revoke an access token on
a server not suppor�ng this feature.

Missing “client_id” parameter
and no authoriza�on header
provided

400 (bad
request) | 401
(unauthorized)

invalid_request Missing parameter client_id

Invalid “client_id” parameter 400 
(bad request) 

invalid_request Invalid parameter client_id

Missing “client_secret”
parameter and no
authoriza�on header
provided

400 (bad
request) | 401
(unauthorized)

invalid_request Client authoriza�on required

Invalid “client_secret”
parameter

400 
(bad request) 

invalid_request Invalid parameter client_secret

Invalid Authoriza�on header 401
(unauthorized)

invalid_client Invalid authoriza�on header

Sample Request



POST /oauth2/revoke HTTP/1.1 
Host: www.domain.org 
Content-Type: application/x-www-form-urlencoded 
 
token=_TiHRG-bA-H3XlFQZ3ndFhkXf9P24/CKN69L8gdSYp5_pw& 
token_type_hint=refresh_token& 
client_id=<OAuth2_client_id>& 
client_secret=<OAuth2_client_secret>& 
clientData=12345678

cURL example

curl -i -X POST
     -H "Content-Type: application/x-www-form-urlencoded" 
     -d 'token=_TiHRG-bA-H3XlFQZ3ndFhkXf9P24/CKN69L8gdSYp5_pw& 
         token_type_hint=refresh_token& 
         client_id=<OAuth2_client_id>& 
         client_secret=<OAuth2_client_secret>& 
         clientData=12345678' 
     https://www.domain.org/oauth2/revoke

Sample Response

HTTP/1.1 204 No Content

8.5 Authen�ca�on and authoriza�on for electronic seals

8.5.1 Introduc�on

The eIDAS regula�on (Regula�on (EU) No 910/2014 [i.1]) defines two basic concepts: an electronic
signature, created by a natural person used to sign the content of a document, and an electronic seal
based on a cer�ficate of a legal person used to prove the origin and integrity of the document. From
a mere technical point of view, both electronic signatures and electronic seals are digital signatures.
However, the usage of the CSC API in order to create an electronic signature or an electronic seal can
be different depending on the above-cited legal context. The present sec�on discusses the usage of
the CSC API for crea�ng electronic seals, which in the context of the present document are digital
signatures created by using a cer�ficate issued to a legal person. This ensures the integrity and origin
of the document, without necessarily commi�ng to the content. ::: {.NOTE} This defini�on is not
limited to the legal defini�on of electronic seals in Regula�on (EU) No 910/2014 [i.1]. ::: In many
cases, electronic seals are created in automated processes and o�en a large number of documents
are to be sealed in one session. In the present document, there are two different possible
authoriza�ons. The first one is the authoriza�on to get access to the API, and the second one is the
authoriza�on to use the signing creden�al for the seal/signature crea�on. The following sec�on
describe how these authoriza�ons can be done with the purpose of crea�ng an electronic seal.

8.5.2 Service authoriza�on and authen�ca�on for electronic seals

Several methods allow access to the CSC API without the need for regular human interac�on, which
would not be very prac�cal in the case of sealing a large number of documents.

8.5.2.1 Login / password



HTTP basic or HTTP digest authen�ca�on can be used to provide access to the API. The login and
password MAY be linked to the signature applica�on or to the cer�ficate owner.

8.5.2.2 OAuth with client creden�als grant

The usage of OAuth 2.0 with client creden�al grant allows gran�ng access to the signing applica�on.
It does convey any user specific iden�fier. This authen�cates the client, any user specific informa�on
is indicated within the respec�ve CSC API call or provided implicitly or separately.

8.5.2.3 Mutual TLS

The signing server can be configured to use TLS connec�ons, requiring clients that a�empt to
connect to get authen�cated. A client SHALL use a client cer�ficate in order to authen�cate. The
client cer�ficate SHALL contain informa�on allowing the signing server to authen�cate the client
applica�on/user. The signing server MAY be configured to accept TLS connec�ons only from a limited
group of allowed clients.

An example can just be a scenario where the usage of the sealing creden�als is limited
only to successfully authen�cated TLS connec�ons using client cer�ficates
authen�ca�on connec�ons. This method does not create any token. In an addi�onal use
case, the remote signing service provider has a specific end point (outside of CSC
specifica�on) which can be accessed via TLS authen�ca�on + API key + secret which
creates an Access Token. And this access token is used later on to access the API. In case
of seals, no extra authoriza�on is used to access the private key. Used with short lived
creden�als. ::: {.NOTE} By defining an empty set of authen�ca�on object types, the RSSP
can decide to not need any more ac�ons. :::

In addi�on to the mutual TLS, a token can be created based on login / password + OTP
by a non CSC end point, and is then used for signing together with a PIN. This can be
used with long-term cer�ficates

8.5.3 Creden�al authoriza�on for electronic seals

The creden�al authoriza�on allows the usage of a specific key. There are three possible strategies, to
avoid human interac�on for each signature.

The first is the usage of an authoriza�on means that can be fully automized, for example the
usage of a PIN.

It is also possible to not require any addi�onal ac�ons, if the access token is already sufficient.

The third one, consists in crea�ng a SAD for a high but limited number of signatures. Since the
crea�on of the SAD is an opera�on which is not repeated very o�en, it can be created in a
non-fully automated process. This allows a more complex authoriza�on, and to be more
precise in what this authoriza�on includes.

9 Crea�ng a remote signature
Remote signature services allow genera�ng digital signatures remotely by means of an RSCD
operated as a service. An RSSP is an organiza�on that manages the RSCD on behalf of the signers.



In general, each �me a remote signature is required, a strong authen�ca�on mechanism SHOULD be
invoked. Strong authen�ca�on requiring the user to authorize to the signature applica�on mul�ple
�mes in a rapid sequence using authoriza�on mechanisms like OTP can be cumbersome. In order to
improve the signer’s experience, the strong authen�ca�on MAY be allowed to occur only once per
signing session (for example with a single OTP) covering mul�ple signatures.

The current specifica�on supports the following three use cases:

1. The remote signature of a single hash;

2. The remote signature of mul�ple hashes passed in a single signature opera�on;

3. The remote signature of mul�ple hashes passed across mul�ple signature opera�ons
occurring within a single signing session.

A RSSP SHALL support at least case 1, with creden�als authoriza�on occurring every �me a signature
is created.

The RSSP decides whether to support mul�-signature transac�ons (use cases 2 and 3) or not. In
some cases, regulatory or security requirements may forbit mul�-signature transac�ons. The
mul�sign output value of the creden�als/info method, as defined in creden�als/info, provides
informa�on if mul�-signature transac�ons are supported by a specific creden�al or not.

A mul�-signature transac�on can be created by invoking the signatures/signHash method, as
defined in signatures/signHash, and submi�ng mul�ple hash values in one run (use case 2, suitable
for “batch signing” of mul�ple documents) or by invoking signatures/signHash mul�ple �mes (use
case 3, suitable for crea�ng mul�ple signatures from a single user in a PDF document). In both cases,
the authoriza�on mechanism adopted by the signature applica�on SHALL explicitly specify the total
number of signatures to be authorized and the remote signing service SHALL prevent signature
applica�ons from crea�ng more signatures than authorized.

See Interac�on among elements and components to understand the workflows supported in this
specifica�on and the sequence of API calls to be invoked to create the supported types of remote
signatures.

10 Error handling
Errors are returned by the remote service using standard HTTP status code syntax. Addi�onal
informa�on is included in the body of the response from an API request using JSON.

The HTTP protocol defines a list of standard status codes that are referenced in this specifica�on to
help the signature applica�on deal with these responses accordingly. For the events described in
Table 2, the remote service SHALL support the corresponding HTTP status codes.

Table 2 – Supported HTTP Status Codes
Standard Status
Code

Descrip�on

200 OK Response to a successful API method request.

204 No Content Response to a successful API method request in case no content is returned.

302 Found Response used to redirect the user to an OAuth 2.0 authoriza�on endpoint.

400 Bad Request Returned due to unsupported, invalid or missing required parameters.



Standard Status
Code

Descrip�on

401 Unauthorized Returned when a bad or expired authoriza�on token is used.

429 Too Many
Requests

Returned when a request is rejected due to rate limi�ng.

500 Internal Server
Error

Returned when the server encounters an unexpected condi�on.

501 Not
Implemented

Returned when an unimplemented method is requested.

503 Service
Unavailable

Returned when the server is currently unable to handle the request due to temporary overloading or
maintenance condi�ons.

Status codes 429 and 50x are applicable to the remote service overall and are not specific to any API
methods. For this reason, they are not men�oned in the error tables for each method specifically.

10.1 Error messages

Just as an HTML error page shows a useful error message to a visitor, the remote service
implemen�ng the API described in this specifica�on SHALL provide a useful error message in case
something goes wrong. When an error is detected, the remote service SHALL return the
corresponding HTTP status code and SHALL return the informa�on on the error in the body of the
HTTP response using the “applica�on/json” media type, as defined by RFC 4627 [5]. The parameters
are serialized into a JSON structure by adding each parameter at the highest structure level.
Parameter names and string values are included as JSON strings as shown in the following example:

HTTP/1.1 400 Bad Request 
Date: Mon, 03 Dec 2018 12:00:00 GMT 
Content-Type: application/json;charset=utf-8 
Content-Length: ... 
{ 
   "error": "invalid_request", 
   "error_description": "The access token is not valid" 
}

The error_descrip�on parameter is OPTIONAL but highly RECOMMENDED to provide a human-
readable text string containing addi�onal informa�on to assist the user in understanding the error
that occurred.

The remote service can also define custom error messages by using messages that are not defined in
this specifica�on.

The following table contains defini�ons for errors that are common to more than one API methods.
Therefore, they’re presented only once in this sec�on instead of being repeated for all API methods.

Table 3 – Predefined common Error Messages
Error Error Descrip�on

invalid_request The request is missing a required parameter, includes an invalid parameter value, includes a
parameter more than once, or is otherwise malformed.

unauthorized_client The client is not authorized to use this method.

access_denied The user, authoriza�on server or remote service denied the request.

unsupported_response_type The authoriza�on server does not support obtaining an authoriza�on code using this
method.



Error Error Descrip�on

invalid_scope The requested scope is invalid, unknown, or malformed.

server_error The authoriza�on server encountered an unexpected condi�on that prevented it from
fulfilling the request.

temporarily_unavailable The authoriza�on server is currently unable to handle the request due to a temporary
overloading or maintenance of the server.

expired_token The access or refresh token is expired or has been revoked.

invalid_token The token provided is not a valid OAuth access or refresh token.

11 The remote service APIs
In order to simplify the naviga�on of this specifica�on, the following table summarizes all the API
methods defined in the present specifica�on. The info method, as defined in info, SHALL be
implemented. All other methods are OPTIONAL.

Table 4 – API methods summary
API Method Descrip�on

info Returns informa�on on the remote service and the list of API methods it has
implemented.

auth/login Authorize the remote service with HTTP Basic or Digest authen�ca�on.

auth/revoke Revoke the service access token or refresh token.

creden�als/list Returns the list of creden�als associated to a user.

creden�als/info Returns informa�on on a signing creden�al, its associated cer�ficate and a descrip�on of
the supported authoriza�on mechanism.

creden�als/authorize Authorize the access to the creden�al for signing.

creden�als/extendTransac�on Extend the validity of a mul�-signature transac�on.

creden�als/sendOTP Start the online OTP mechanism associated to a creden�al.

signatures/signHash Calculate a raw digital signature from one or more hash values.

signatures/signDoc Creates one or more AdES signatures for documents or document digests.

signatures/�mestamp Return a �me stamp token for the input hash value.

oauth2/authorize* Ini�ate an OAuth 2.0 authoriza�on flow.

oauth2/token* Obtain an OAuth 2.0 access token or refresh token.

oauth2/revoke* Revoke an OAuth 2.0 access token or refresh token.

Note 21: Although oauth2/authorize , oauth2/token, oauth2/pushed_authorize, and
oauth2/revoke, as defined in OAuth 2.0 Authoriza�on, do not specify regular CSC API methods
but rather endpoints managed by the OAuth2 authoriza�on server, they’re listed in Table 4 to
provide a complete overview of the endpoints that can be supported by a remote service
conforming to this specifica�on.

11.1 info

Descrip�on



Returns informa�on about the remote service and the list of the API methods it supports. This
method SHALL be implemented by any remote service conforming to this specifica�on.

Input

This method allows the following parameters:
Parameter Presence Value Descrip�on

lang OPTIONAL String Request a preferred language of the response to the remote service, specified according
to RFC 5646 [9]. 
If present, the remote service SHALL provide language-specif ic responses using the
specified language. If the specified language is not supported then it SHALL provide these
responses in the language as specified in the lang output parameter. 

11.1.0.1 Output:

This method returns the following values using the “applica�on/json” format:

A�ribute Presence Value Descrip�on

specs REQUIRED String The version of this specifica�on implemented by the provider. The
format of the string is Major.Minor.x.y , where Major is a number
equivalent to the API version (e.g. 2 for API v2) and Minor is a
number iden�fying the version update, while x and y are subversion
numbers. 
The value corresponding to this specifica�on is “2.0.0.0”. 

name REQUIRED String The commercial name of the remote service. The maximum size of
the string is 255 characters.

logo REQUIRED String The URI of the image file containing the logo of the remote service
which SHALL be published online. The image SHALL be in either
JPEG or PNG format and not larger than 256x256 pixels.

region REQUIRED String The ISO 3166-1 [22] Alpha-2 code of the Country where the remote
service provider is established (e.g. ES for Spain).

lang REQUIRED String The language used in the responses, specified according to RFC
5646 [9].

descrip�on REQUIRED String A free form descrip�on of the remote service in the lang language.
The maximum size of the string is 255 characters.

authType REQUIRED Array of
String

One or more values corresponding to the service authoriza�on
mechanisms supported by the remote service to authorize the
access to the API: 

“external”: in case the authoriza�on is managed externally
(e.g. using a VPN or a private LAN). 
“TLS”: in case the authoriza�on is provided by means of TLS
client cer�ficate authen�ca�on. 
“basic”: in case of HTTP Basic Authen�ca�on. 
“digest”: in case of HTTP Digest Authen�ca�on. 
“oauth2code”: in case of OAuth 2.0 with authoriza�on code
flow. 
“oauth2client”: in case of OAuth 2.0 with client creden�als
flow. 



A�ribute Presence Value Descrip�on

oauth2 REQUIRED
Condi�onal

String The base URI of the OAuth 2.0 authoriza�on server endpoint
supported by the remote service for service authoriza�on and/or
creden�al authoriza�on. The parameter SHALL be present if 

the authType parameter contains “oauth2code” or
“oauth2client” or 
the remote service supports the value “oauth2code” for the
auth/mode parameter returned by creden�als/info (as
specified in creden�als/info) 

and the parameter “oauth2Issuer” is not present. 

This URI SHALL be combined with the path components described
in OAuth 2.0 Authoriza�on in order to build the actual endpoint
URLs. 

oauth2Issuer REQUIRED
Condi�onal

String The issuer URL of the OAuth 2.0 authoriza�on server as defined in
IETF RFC 8414 [23] supported by the remote service for service
authoriza�on and/or creden�al authoriza�on. The parameter
SHALL be present if 

the authType parameter contains “oauth2code” or
“oauth2client” or 
the remote service supports the value “oauth2code” for the
auth/mode parameter returned by creden�als/info (as
specified in creden�als/info) 

and the parameter “oauth2” is not present. 

The OAuth endpoint URLs are obtained from the OAuth Server
metadata as described in IETF RFC 8414 [23]. 

asynchronousOpera�onMode OPTIONAL Boolean This parameter shall be “true” if the remote signing server supports
also asynchronous signature mechanism. The default value is
“false”. An omi�ed parameter or the value “false” indicates that the
remote signing server manages signature requests only in
synchronous opera�on mode.

methods REQUIRED Array of
String

The list of names of all the API methods described in this
specifica�on that are implemented and supported by the remote
service.

valida�onInfo OPTIONAL Boolean This parameter SHALL be “true” if the remote signing server
supports the “valida�onInfo” response parameter of the method
signatures/signDoc in not mandatory cases. An omi�ed parameter
or the value “false” indicates that the remote signing server does
not support “valida�onInfo” in those cases.

signAlgorithms REQUIRED JSON
Object

Object including one or more signature algorithms supported by
the RSSP.

signature_formats REQUIRED JSON
Object

Object including one or more signature formats supported by the
RSSP.

conformance_levels REQUIRED Array of
String

The list of names of all signature conformance levels supported by
the RSSP as defined in the Input parameter table in
signatures/signDoc.

The signAlgorithms is a JSON Object composed by the following parameters:

algos
algoParams

specified according to the following table.



Parameter Presence Value Descrip�onParameter Presence Value Descrip�on

algos REQUIRED Array
of
String

The list of signature algorithms supported by the RSSP as defined in the Input
parameter table in signatures/signHash. The supported signature algorithms SHOULD
follow the recommenda�ons of ETSI TS 119 312 [21] and SHALL be expressed as defined
in Expressing algorithms clause.

algoParams REQUIRED 
Condi�onal

Array
of
String

The list of eventual signature parameters as defined in the Input parameter table in
signatures/signHash.

The signature_formats is a JSON Object composed by the following parameters:

formats
envelope_properties

specified according to the following table.

Parameter Presence Value Descrip�on

formats REQUIRED Array
of
String

The list of signature formats supported by the RSSP as defined in the Input
parameter table in signatures/signDoc.

envelope_proper�es REQUIRED 
Condi�onal

Array
of
Array
of
String

The list of the proper�es concerning the signed envelope, whose possible
values depend on the value of the formats parameter entries, as defined in the
Input parameter table in signatures/signDoc. The number of arrays included in
the envelope_proper�es array SHALL equal the number of entries in the
formats array. The values included in the array at posi�on i of the
envelope_proper�es array SHALL refer to the signature format value included
at posi�on i of the formats array. An empty array at the posi�on i of the
envelope_proper�es array indicates that the RSSP supports the default signed
envelope property for the signature format specified at the posi�on i of the
formats array, as defined in the Input parameter table in signatures/signDoc.

Note 22: info is a mandatory API method, so it MAY be excluded from the list of API method names
returned by the methods parameter. 
The endpoints oauth2/authorize , oauth2/token, oauth2/pushed_authorize and
oauth2/revoke, as defined in OAuth 2.0 Authoriza�on, do not specify regular API methods but
rather endpoints managed by the OAuth2 authoriza�on server, therefore they MAY be excluded
from the list of API method names returned by the methods parameter.

Sample Request

POST /csc/v2/info HTTP/1.1 
Host: service.domain.org 
Content-Type: application/json 
 
{}

cURL example

curl -i -X POST
     -H "Content-Type: application/json" 
     -d '{}' 
     https://service.domain.org/csc/v2/info

Sample Response



HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8 
 
{ 
   "specs": "2.0.0.0", 
   "name": "ACME Trust Services", 
   "logo": "https://service.domain.org/images/logo.png", 
   "region": "IT", 
   "lang": "en-US", 
   "description": "An efficient remote signature service", 
   "authType": ["basic", "oauth2code"], 
   "oauth2": "https://www.domain.org/", 
   "methods": ["auth/login", "auth/revoke", "credentials/list", 
      "credentials/info", "credentials/authorize", 
      "credentials/sendOTP", 
      "signatures/signHash"], 
   "signAlgorithms": 
   { 
    "algos": ["1.2.840.10045.4.3.2", "1.2.840.113549.1.1.1", "1.2.840.113549.1.1.10"] 
   }, 
   "signature_formats": 
   { 
    "formats": ["C", "X", "P"], 
    "envelope_properties": [["Detached", "Attached", "Parallel"], 
                            ["Enveloped", "Enveloping", "Detached"], 
                            ["Certification", "Revision"]] 
   }, 
   "conformance_levels": ["Ades-B-B", "Ades-B-T"] 
}

11.2 auth/login

Descrip�on

Obtain an access token for service authoriza�on from the remote service using HTTP Basic
Authen�ca�on or HTTP Digest authen�ca�on, as defined in RFC 7235 [2], using the userID and
password assigned to the user. These authen�ca�on factors SHALL be passed directly in the HTTP
header as an authoriza�on grant to obtain a service access token to use for the subsequent API
requests within the same session.

The OPTIONAL rememberMe parameter can be used, under the control of the user, in order to
extend a successful authen�ca�on for subsequent sessions and to avoid the user to authen�cate
again within a predefined period of �me. In this case, a refresh token will be obtained, which can be
used in the refresh_token parameter in subsequent calls as an alterna�ve to passing userID and
password again for obtaining a new access token.

Note 23: The RECOMMENDED mechanism for service authoriza�on is OAuth 2.0 (see OAuth 2.0
Authoriza�on). HTTP Basic Authen�ca�on is an unsafe mechanism and therefore it SHOULD
NOT be used, especially by signature applica�on running as a service. It should only be used
when there is a high degree of trust between the user and the signature applica�on and when
other authoriza�on types like OAuth 2.0 are not available. This method may also be deprecated
in future releases of this specifica�on.

Input



The userID and password strings SHALL be encoded as defined in RFC 7235 [2] and provided in the
HTTP Authoriza�on header. If available, a refresh token MAY be alterna�vely used to re-authen�cate
the user a�er an access token has expired. This method allows the following parameters:

Parameter Presence Value Descrip�on

refresh_token REQUIRED
Condi�onal

String The long-lived refresh token returned from a previous call to this method with HTTP
Basic Authen�ca�on. This MAY be used as an alterna�ve to the Authoriza�on
header to reauthen�cate the user according to the method described in RFC 6749
[11] par. 1.5. In such case the encoded userId and password SHALL not be provided
in the HTTP Authoriza�on header. 
NOTE: This refresh token MAY not be compa�ble with refresh tokens obtained by
means of OAuth 2.0 authoriza�on (see oauth2/token in oauth2/token). 

rememberMe OPTIONAL Boolean A boolean value typically corresponding to an op�on that the user may ac�vate
during the authen�ca�on phase to “stay signed in” and maintain a valid
authen�ca�on across mul�ple sessions:

“true”: if the remote service supports user reauthen�ca�on, a
refresh_token will be returned and the signature applica�on may use it on a
subsequent call to this method instead of passing an Authoriza�on header. 
“false”: a refresh_token will not be returned. 

If the parameter is omi�ed, it will default to “false”. 
This mechanism is based on the method described in RFC 6749 [11] sec�on 1.5. 

clientData OPTIONAL String The clientData as defined in the Input parameter table in oauth2/authorize.

Output

This method returns the following values using the “applica�on/json” format:

A�ribute Presence Value Descrip�on

access_token REQUIRED String The short-lived service access token used to authen�cate the subsequent API
requests within the same session. 
This token SHALL be used as the value of the “Authoriza�on: Bearer” in the HTTP
header of the API requests. When receiving an API call with an expired token, the
remote service SHALL return an error and require a new auth/login request. 

refresh_token OPTIONAL
Condi�onal

String The long-lived refresh token used to re-authen�cate the user on the subsequent
session. The value is returned if the rememberMe parameter in the request is
“true” and the remote service supports user reauthen�ca�on. 
This mechanism is based on the method described in RFC 6749 [11] par. 1.5. 
NOTE: This refresh_token MAY not be compa�ble with refresh tokens obtained by
means of OAuth 2.0 authoriza�on. 

expires_in OPTIONAL Number The life�me in seconds of the service access token. If omi�ed, the default
expira�on �me is 3600 (1 hour).

Note 24: Access tokens and refresh tokens are creden�als used to access protected resources. These
tokens are strings represen�ng a service authoriza�on issued to the client. The strings MAY
represent specific authoriza�on criteria, but they SHOULD be opaque to the client.

Note 25: An exis�ng refresh token MAY be automa�cally revoked if the user to whom it was issued
performs a new service authoriza�on with the rememberMe parameter set to “true”. It is up to
the remote service to support a single or mul�ple refresh tokens per user.

Note 26: The life�me of the refresh_token is determined by the RSSP.

Error Case Status Code Error Error
Descrip�on



Error Case Status Code Error Error
Descrip�on

The authoriza�on header does not match the basic HTTP
authen�ca�on pa�ern (“Basic base64”) - if refresh token is not
present

401 
(unauthorized)

invalid_request Malformed
authen�ca�on
parameter.

Decoded creden�als are not in the form “username:password” 400 
(bad request) 

invalid_request Malformed
username-
password.

Invalid refresh_token parameter format 400 
(bad request) 

invalid_request Invalid string
parameter:
refresh_token

Invalid refresh_token value 400 
(bad request) 

invalid_request Invalid
refresh_token

Authen�ca�on error – login failed 400 
(bad request) 

authen�ca�on_error An error
occurred
during
authen�ca�on
process

Sample Request

POST /csc/v2/auth/login HTTP/1.1 
Host: service.domain.org 
Authorization: Basic Y2xpZW50X2lkOmNsaWVudF9zZWNyZXQ= 
Content-Type: application/json 
 
{ 
   "rememberMe": true 
}

cURL example

curl -i -X POST
     -H "Content-Type: application/json" 
     -H "Authorization: Basic Y2xpZW50X2lkOmNsaWVudF9zZWNyZXQ=" 
     -d '{"rememberMe": true}' 
     https://service.domain.org/csc/v2/auth/login

Sample Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8 
{ 
   "access_token": "4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA", 
   "refresh_token": 
   "_TiHRG-bA-H3XlFQZ3ndFhkXf9P24/CKN69L8gdSYp5_pw", 
   "expires_in": 3600 
}

11.3 auth/revoke

Descrip�on

Revoke a service access token or refresh token that was obtained from the remote service or an
associated authoriza�on server. The revoca�on process is aligned with the OAuth 2.0 revoca�on



mechanism described in RFC 7009 [13] and can be applied to both tokens issued through calls to
remote service methods (e.g. auth/login as defined in auth/login) and tokens issued as a result of an
OAuth 2.0 flow (e.g. oauth2/token as defined in oauth2/token). This method MAY be used to
enforce the security of the remote service. When the signature applica�on needs to terminate a
session, it is RECOMMENDED to invoke this method to prevent further access by reusing the token.

This method allows the signature applica�on to invalidate its tokens according to the following
approach:

If the token passed to the request is a refresh_token, then the authoriza�on server SHALL
invalidate the refresh token and it SHALL also invalidate any exis�ng access tokens based on
the same authoriza�on grant.

If the token passed to the request is an access_token, then the authoriza�on server SHALL
invalidate the access token and it SHALL NOT revoke any exis�ng refresh token based on the
same authoriza�on grant.

The invalida�on of the token takes place immediately, and the token cannot be used again a�er its
revoca�on. As a token issued in the process of creden�al authoriza�on is automa�cally invalidated
as soon as its usage limit is reached, a client does not have to revoke the corresponding token a�er
use. However, a provider SHOULD support the revoca�on of such token type before reaching the
usage limit.

Input

This method allows the following parameters:

Parameter Presence Value Descrip�on

token REQUIRED String The token that the signature applica�on wants to get revoked.

token_type_hint OPTIONAL String 
access_token
|
refresh_token 

An OPTIONAL hint about the type of the token submi�ed for revoca�on. If
the parameter is omi�ed, the remote service SHOULD try to iden�fy the
token across all the available tokens.

clientData OPTIONAL String The clientData as defined in the Input parameter table in oauth2/authorize.

Output

This method has no output values and the response returns “No Content” status.

Error Case Status
Code

Error Error Descrip�on

The authoriza�on header does not match the pa�ern
“Bearer [sessionKey]”

400 
(bad
request) 

invalid_request Malformed authoriza�on
header.

Missing or not String “token” parameter 400 
(bad
request) 

invalid_request Missing (or invalid type) string
parameter token

“token_hint” parameter present, not equal to
“access_token” nor “refresh_token”

400 
(bad
request) 

invalid_request Invalid string parameter
token_type_hint



Error Case Status
Code

Error Error Descrip�on

Invalid access_token or refresh_token 400 
(bad
request) 

invalid_request Invalid string parameter token

Sample Request

POST /csc/v2/auth/revoke HTTP/1.1 
Host: service.domain.org 
Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA 
Content-Type: application/json 
 
{ 
   "token": "_TiHRG-bA-H3XlFQZ3ndFhkXf9P24/CKN69L8gdSYp5_pw", 
   "token_type_hint": "refresh_token", 
   "clientData": "12345678" 
}

cURL example

curl -i -X POST
     -H "Content-Type: application/json" 
     -H "Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA" 
     -d '{"token": "_TiHRG-bA-H3XlFQZ3ndFhkXf9P24/CKN69L8gdSYp5_pw", 
          "token_type_hint": "refresh_token", 
          "clientData": "12345678"}' 
     https://service.domain.org/csc/v2/auth/revoke

Sample Response

HTTP/1.1 204 No Content

11.4 creden�als/list

Descrip�on

Returns the list of creden�als associated with a user iden�fier. A user MAY have one or mul�ple
creden�als hosted by a single remote signing service provider. 
If requested, it can also return the signing cer�ficate, the whole associated cer�ficate chain,
addi�onal informa�on about the signing cer�ficate and/or informa�on about the authoriza�on
mechanism required to authorize the access to the creden�als for remote signing. 
If the user is authen�cated directly by the RSSP then the userID is implicit and SHALL NOT be
specified. 
This method can also be used in case of a community of users, to let the client retrieve the list of
creden�als assigned to a specific user of the community. In this case the userID SHALL be passed
explicitly to retrieve the list of creden�alIDs for a specific user. Managing a community of users that
are authen�cated by the client using a specific authen�ca�on framework is out of the scope of this
specifica�on.

Input

This method allows the following parameters:



Parameter Presence Value Descrip�onParameter Presence Value Descrip�on

userID REQUIRED
Condi�onal

String The iden�fier associated to the iden�ty of the creden�al owner. This parameter
SHALL NOT be present if the service authoriza�on is user-specific (see NOTE below).
In that case the userID is already implicit in the service access token passed in the
Authoriza�on header. 
If a user-specific service authoriza�on is present, it SHALL NOT be allowed to use
this parameter to obtain the list of creden�als associated to a different user. The
remote service SHALL return an error in such case.

creden�alInfo OPTIONAL Boolean Request to return the main informa�on included in the public key cer�ficate and
the public key cer�ficate itself or the cer�ficate chain associated to the creden�als.
The default value is “false”, so if the parameter is omi�ed then the informa�on will
not be returned.  

cer�ficates OPTIONAL 
Condi�onal

String 
none |
single |
chain 

Specifies which cer�ficates from the cer�ficate chain SHALL be returned in
certs/cer�ficates. 

“none”: No cer�ficate SHALL be returned. 
“single”: Only the end en�ty cer�ficate SHALL be returned. 
“chain”: The full cer�ficate chain SHALL be returned. 

The default value is “single”, so if the parameter is omi�ed then the method will
only return the end en�ty cer�ficate(s). 
This parameter MAY be specified only if the parameter creden�alInfo is “true”. If
the parameter creden�alInfo is not “true” and this parameter is specified its value
SHALL be ignored.  

certInfo OPTIONAL 
Condi�onal

Boolean Request to return various parameters containing informa�on from the end en�ty
cer�ficate(s). This is useful in case the signature applica�on wants to retrieve some
details of the cer�ficate(s) without having to decode it first. The default value is
“false”, so if the parameter is omi�ed then the informa�on will not be returned. 
This parameter MAY be specified only if the parameter creden�alInfo is “true”. If
the parameter creden�alInfo is not “true” and this parameter is specified its value
SHALL be ignored.

authInfo OPTIONAL 
Condi�onal

Boolean Request to return various parameters containing informa�on on the authoriza�on
mechanisms supported by the corresponding creden�al (auth group). The default
value is “false”, so if the parameter is omi�ed then the informa�on will not be
returned. 
This parameter MAY be specified only if the parameter creden�alInfo is “true”. If
the parameter creden�alInfo is not “true” and this parameter is specified its value
SHALL be ignored.

onlyValid OPTIONAL 
Condi�onal

Boolean Request to return only creden�als usable to create a valid signature. The default
value is “false”, so if the parameter is omi�ed then the method will return all
creden�als avaialble to the owner.  
The remote service MAY NOT support this parameter. When the parameter is
supported SHALL be returned in output.

lang OPTIONAL String The lang as defined in the Input parameter table in info.

clientData OPTIONAL String The clientData as defined in the Input parameter table in oauth2/authorize.

Note 27: User-specific service authoriza�on include the following authType: “basic”, “digest” and
“oauth2code”. Non-user-specific service authoriza�on include the following authType:
“external”, “TLS” or “oauth2client”.

Output

This method returns the following values using the “applica�on/json” format:

A�ribute Presence Value Descrip�on



A�ribute Presence Value Descrip�on

creden�alIDs REQUIRED Array of
String

One or more creden�alID(s) associated with the provided or implicit userID.

creden�alInfos OPTIONAL 
Condi�onal

Array of
Creden�alInfo

The contents of creden�alInfo object are described below. If the
creden�alInfo parameter is not “true”, this value SHALL NOT be returned.

onlyValid REQUIRED 
Condi�onal

Boolean This value SHALL be returned true when the input parameter “onlyValid”
was true, and the RSSP supports this feature, i.e. the RSSP only returns
creden�als which can be used for siging. 
If the values is false or the output parameter is omi�ed, then the list may
contain creden�als which cannot be used for signing.

The ‘creden�alInfo Object’ is a JSON Object composed by the a�ributes specified in the following
table.

A�ribute Presence Value Descrip�on

creden�alID REQUIRED String The creden�alID iden�fying one of the creden�als associated with the
provided or implicit userID.

descrip�on OPTIONAL String A free form descrip�on of the creden�al in the lang language. The
maximum size of the string is 255 characters.

signatureQualifier OPTIONAL String Iden�fier qualifying the type of signature this creden�al is suitable for
(see signatures/signDoc).

key/status REQUIRED String 
enabled |
disabled 

The status of the signing key of the creden�al: 

“enabled”: the signing key is enabled and can be used for signing. 
“disabled”: the signing key is disabled and cannot be used for
signing. This MAY occur when the owner has disabled it or when
the RSSP has detected that the associated cer�ficate is expired or
revoked. 

key/algo REQUIRED Array of String The list of OIDs of the supported key algorithms. For example:
1.2.840.113549.1.1.1 = RSA encryp�on, 1.2.840.10045.4.3.2 = ECDSA
with SHA256.

key/len REQUIRED Number The length of the cryptographic key in bits.

key/curve REQUIRED
Condi�onal

String The OID of the ECDSA curve. The value SHALL only be returned if
keyAlgo is based on ECDSA.

cert/status OPTIONAL String 
valid | expired
| revoked |
suspended 

The status of validity of the end en�ty cer�ficate. The value is
OPTIONAL, so the remote service SHOULD only return a value that is
accurate and consistent with the actual validity status of the cer�ficate
at the �me the response is generated.

cert/cer�ficates REQUIRED 
Condi�onal

Array of String One or more Base64-encoded X.509v3 cer�ficates from the cer�ficate
chain. If the cer�ficates parameter is “chain”, the en�re cer�ficate chain
SHALL be returned with the end en�ty cer�ficate at the beginning of the
array. If the cer�ficates parameter is “single”, only the end en�ty
cer�ficate SHALL be returned. If the cer�ficates parameter is “none”, this
value SHALL NOT be returned.

cert/issuerDN REQUIRED 
Condi�onal

String The Issuer Dis�nguished Name from the X.509v3 end en�ty cer�ficate as
UTF-8-encoded character string according to RFC 4514 [4]. This value
SHALL be returned when certInfo is “true”.

cert/serialNumber REQUIRED 
Condi�onal

String The Serial Number from the X.509v3 end en�ty cer�ficate represented
as hex-encoded string format. This value SHALL be returned when
certInfo is “true”.

cert/subjectDN REQUIRED 
Condi�onal

String The Subject Dis�nguished Name from the X.509v3 end en�ty cer�ficate
as UTF-8-encoded character string, according to RFC 4514 [4]. This value
SHALL be returned when certInfo is “true”.



A�ribute Presence Value Descrip�on

cert/validFrom REQUIRED 
Condi�onal

String The validity start date from the X.509v3 end en�ty cer�ficate as
character string, encoded as GeneralizedTime (RFC 5280 [8])
(e.g. “YYYYMMDDHHMMSSZ”). This value SHALL be returned when
certInfo is “true”.

cert/validTo REQUIRED 
Condi�onal

String The validity end date from the X.509v3 end en�ty cer�ficate as character
string, encoded as GeneralizedTime (RFC 5280 [8])
(e.g. “YYYYMMDDHHMMSSZ”). This value SHALL be returned when
certInfo is “true”.

auth/mode REQUIRED String 
explicit |
oauth2code 

Specifies one of the authoriza�on modes. For more informa�on also see
OAuth 2.0 Authoriza�on: 

“explicit”: the authoriza�on process is managed by the signature
applica�on, which collects authen�ca�on factors of various
types.
“oauth2code”: the authoriza�on process is managed by the
remote service using an OAuth 2.0 mechanism based on
authoriza�on code as described in Sec�on 1.3.1 of RFC 6749
[11].

SCAL OPTIONAL String 
1 | 2 

Specifies if the RSSP will generate for this creden�al a signature
ac�va�on data (SAD) or an access token with scope “creden�al” that
contains a link to the hash to-be-signed: 

“1”: The hash to-be-signed is not linked to the signature
ac�va�on data.
“2”: The hash to-be-signed is linked to the signature ac�va�on
data. 

This value is OPTIONAL and the default value is “1”. 
See Note below.

auth/expression OPTIONAL 
Condi�onal

String An expression defining the combina�on of authen�ca�on objects
required to authorize usage of the private key. 
If empty, an “AND” of all authen�ca�on objects is implied. 
Supported operators are: “AND” | “OR” | “XOR” | “(” | “)” This value
SHALL NOT be returned if auth/mode is not “explicit”.

auth/objects REQUIRED 
Condi�onal

Array of
authen�ca�on
object types

The authen�ca�on object types available for this creden�al. 
This value SHALL only be returned if auth/mode is “explicit”.

mul�sign REQUIRED Number 
≥ 1 

A number equal or higher to 1 represen�ng the maximum number of
signatures that can be created with this creden�al with a single
authoriza�on request (e.g. by calling creden�als/ signHash method, as
defined in signatures/signHash, once with mul�ple hash values or calling
it mul�ple �mes). The value of numSignatures specified in the
authoriza�on request SHALL NOT exceed the value of this value.

lang OPTIONAL String The lang as defined in the Output parameter table in info.

Note 28: As described in the difference between SCAL1 and SCAL2 in Creden�al authoriza�on, the
value “2” only gives informa�on on the link between the hash and the SAD (or access token
with scope “creden�al”), it does not give informa�on if a full SCAL2 as described in CEN TS 119
241-1 [i.5] is implemented.

Error Case Status
Code

Error Error Descrip�on

The authoriza�on header does not match the pa�ern “Bearer
[sessionKey]”

400 
(bad
request) 

invalid_request Malformed authoriza�on
header.



Error Case Status
Code

Error Error Descrip�on

Not empty “userID” parameter in case of user-specific
authoriza�on

400 
(bad
request) 

invalid_request userID parameter MUST
be null

Invalid “userID” format in case of no user-specific authoriza�on 400 
(bad
request) 

invalid_request Invalid parameter userID

When present, invalid “cer�ficates” parameter 400 
(bad
request)

invalid_request Invalid parameter
cer�ficates

Sample Request

POST /csc/v2/credentials/list HTTP/1.1 
Host: service.domain.org 
Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA 
Content-Type: application/json 
 
{ 
   "credentialInfo": true, 
   "certificates": "chain", 
   "certInfo": true, 
   "authInfo": true 
}

cURL example

curl -i -X POST
     -H "Content-Type: application/json" 
     -H "Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA" 
     -d '{"credentialInfo": true, 
          "certificates": "chain", 
          "certInfo": true, 
          "authInfo": true}' 
     https://service.domain.org/csc/v2/credentials/list

Sample Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8 
 
{ 
   "credentialIDs": [ "GX0112348", "HX0224685" ] 
   "credentialInfos": 
    [  
        { 
            "credentialID": "GX0112348", 
            "key": 
            { 
                "status": "enabled", 
                "algo": [ "1.2.840.113549.1.1.11", "1.2.840.113549.1.1.10" ], 
                "len": 2048 
            }, 
            "cert": 
            { 
                "status": "valid", 
                "certificates": 
                [ 
                    "<Base64-encoded_X.509_end_entity_certificate>", 



                    "<Base64-encoded_X.509_intermediate_CA_certificate>", 
                    "<Base64-encoded_X.509_root_CA_certificate>" 
                ], 
                "issuerDN":"<X.500_issuer_DN_printable_string>", 
                "serialNumber": "5AAC41CD8FA22B953640", 
                "subjectDN": "<X.500_subject_DN_printable_string>", 
                "validFrom": "20200101100000Z", 
                "validTo": "20230101095959Z" 
            }, 
            "auth": { 
                "mode": "explicit", 
                "expression": "PIN AND OTP", 
                "objects": [ 
                    { 
                        "type": "Password", 
                        "id": "PIN", 
                        "format": "N", 
                        "label": "PIN", 
                        "description": "Please enter the signature PIN"                      
                    }, 
                    { 
                        "type": "Password", 
                        "id": "OTP", 
                        "format": "N", 
                        "generator": "totp", 
                        "label": "Mobile OTP", 
                        "description": "Please enter the 6 digit code you received by 
SMS" 
                    } 
                ] 
            } 
            "multisign": 5, 
            "lang": "en-US" 
        }, 
        { 
            "credentialID": " HX0224685", 
            ………
            ………
        } 
    ] 
}

11.5 creden�als/info

11.5.0.1 Descrip�on

Retrieves the creden�al. If requested, it can also return the signing cer�ficate, the whole associated
cer�ficate chain, addi�onal informa�on about the signing cer�ficate and/or informa�on about the
authoriza�on mechanism required to authorize the access to the creden�al for remote signing.

11.5.0.2 Input

This method allows the following parameters:
Parameter Presence Value Descrip�on

creden�alID REQUIRED String The unique iden�fier associated to the creden�al.

cer�ficates OPTIONAL String 
none | single |
chain 

The cer�ficates as defined in the Input parameter table in creden�als/list.

certInfo OPTIONAL Boolean The certInfo as defined in the Input parameter table in creden�als/list.



Parameter Presence Value Descrip�on

authInfo OPTIONAL Boolean The authInfo as defined in the Input parameter table in creden�als/list.

lang OPTIONAL Strings The lang as defined in the Input parameter table in info.

clientData OPTIONAL String The clientData as defined in the Input parameter table in
oauth2/authorize.

11.5.0.3 Output:

This method returns the following values using the “applica�on/json” format:
A�ribute Presence Value Descrip�on

descrip�on OPTIONAL String The descrip�on as defined in the creden�alInfo Object
a�ribute table in creden�als/list.

signatureQualifier OPTIONAL String Iden�fier qualifying the type of signature this creden�al is
suitable for (see signatures/signDoc).

key/status REQUIRED String 
enabled | disabled 

The key/status as defined in the creden�alInfo Object
a�ribute table in creden�als/list.

key/algo REQUIRED Array of String The key/algo as defined in the creden�alInfo Object a�ribute
table in creden�als/list.

key/len REQUIRED Number The key/len as defined in the creden�alInfo Object a�ribute
table in creden�als/list.

key/curve REQUIRED
Condi�onal

String The key/curve as defined in the creden�alInfo Object
a�ribute table in creden�als/list.

cert/status OPTIONAL String 
valid | expired |
revoked | suspended 

The cert/status as defined in the creden�alInfo Object
a�ribute table in creden�als/list.

cert/cer�ficates REQUIRED
Condi�onal

Array of String The cert/cer�ficates as defined in the creden�alInfo Object
a�ribute table in creden�als/list.

cert/issuerDN REQUIRED
Condi�onal

String The cert/issuerDN as defined in the creden�alInfo Object
a�ribute table in creden�als/list.

cert/serialNumber REQUIRED
Condi�onal

String The cert/serialNumber as defined in the creden�alInfo Object
a�ribute table in creden�als/list.

cert/subjectDN REQUIRED
Condi�onal

String The cert/subjectDN as defined in the creden�alInfo Object
a�ribute table in creden�als/list.

cert/validFrom REQUIRED
Condi�onal

String The cert/validFrom as defined in the creden�alInfo Object
a�ribute table in creden�als/list.

cert/validTo REQUIRED
Condi�onal

String The cert/validTo as defined in the creden�alInfo Object
a�ribute table in creden�als/list.

auth/mode REQUIRED String 
explicit | oauth2code 

The auth/mode as defined in the creden�alInfo Object
a�ribute table in creden�als/list.

auth/expression OPTIONAL 
Condi�onal

String The auth/expression as defined in the creden�alInfo Object
a�ribute table in creden�als/list.

auth/objects REQUIRED 
Condi�onal

Array of authen�ca�on
object types

The auth/objects as defined in the creden�alInfo Object
a�ribute table in creden�als/list.

SCAL OPTIONAL String 
1 | 2 

The SCAL as defined in the creden�alInfo Object a�ribute
table in creden�als/list. 
See the Note in creden�als/list about the SCAL a�ribute.

mul�sign REQUIRED Number 
≥ 1 

The mul�sign as defined in the creden�alInfo Object
a�ribute table in creden�als/list.

lang OPTIONAL String The lang as defined in the Output parameter table in info.



Error Case Status
Code

Error Error Descrip�onError Case Status
Code

Error Error Descrip�on

The authoriza�on header does not match the pa�ern
“Bearer [sessionKey]”

400 
(bad
request)

invalid_request Malformed authoriza�on header.

Missing or not String “creden�alID” parameter 400 
(bad
request) 

invalid_request Missing (or invalid type) string
parameter creden�alID

Invalid “creden�alID” parameter 400 
(bad
request) 

invalid_request Invalid parameter creden�alID

Invalid “cer�ficates” parameter 400 
(bad
request) 

invalid_request Invalid parameter cer�ficates

Sample Request

POST /csc/v2/credentials/info HTTP/1.1 
Host: service.domain.org 
Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA 
Content-Type: application/json 
 
{ 
   "credentialID": "GX0112348", 
   "certificates": "chain", 
   "certInfo": true, 
   "authInfo": true 
}

cURL example

curl -i -X POST
     -H "Content-Type: application/json" 
     -H "Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA" 
     -d '{"credentialID": "GX0112348", 
          "certificates": "chain", 
          "certInfo": true, 
          "authInfo": true }' 
     https://service.domain.org/csc/v2/credentials/info

Sample Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8 
 
{  
   "key":{  
      "status":"enabled", 
      "algo":[ 
         "1.2.840.113549.1.1.1", 
         "0.4.0.127.0.7.1.1.4.1.3" 
      ], 
      "len":2048 
   }, 
   "cert":{  
      "status":"valid", 
      "certificates":[  
         "<Base64-encoded_X.509_end_entity_certificate>", 
         "<Base64-encoded_X.509_intermediate_CA_certificate>", 
         "<Base64-encoded_X.509_root_CA_certificate>" 



      ], 
      "issuerDN":"<X.500_issuer_DN_printable_string>", 
      "serialNumber":"5AAC41CD8FA22B953640", 
      "subjectDN":"<X.500_subject_DN_printable_string>", 
      "validFrom":"20180101100000Z", 
      "validTo":"20190101095959Z" 
   }, 
    "auth": { 
        "mode": "explicit", 
        "expression": "PIN AND OTP", 
        "objects": { 
            { 
                "type": "Password", 
                "id": "PIN", 
                "format": "N", 
                "label": "PIN", 
                "description": "Please enter the signature PIN"                      
            }, 
            { 
                "type": "Password", 
                "id": "OTP", 
                "format": "N", 
                "generator": "totp", 
                "label": "Mobile OTP", 
                "description": "Please enter the 6 digit code you received by SMS" 
            } 
        } 
    } 
   "multisign":5, 
   "lang":"en-US" 
}

11.6 creden�als/authorize

Descrip�on

Authorize the access to the creden�al for remote signing, according to the authoriza�on
mechanisms associated to it. This method returns the Signature Ac�va�on Data (SAD) required to
authorize the signatures/signHash method, as defined in signatures/signHash or signatures/signDoc
method, as defined in signatures/signDoc.

Authen�ca�on objects and corresponding values collected from the user SHALL be included in the
request according to the requirements specified by the creden�als/info method, as defined in
creden�als/info. 
This method SHALL be used in case of “explicit” authoriza�on. This method SHALL also be used in
case that no authen�ca�on objects are required, to trigger a possible authoriza�on mechanism
managed by the remote service. This method SHALL NOT be used in case of “oauth2” creden�al
authoriza�on; instead, any of the available OAuth 2.0 authoriza�on mechanisms SHALL be used.

The numSignatures parameter SHALL indicate the total number of signatures to authorize. In case of
mul�-signature transac�ons where the signatures/signHash method is invoked mul�ple �mes, the
signature applica�on SHALL obtain a new SAD by invoking the creden�als/extendTransac�on
method, as defined in creden�als/extendTransac�on, before the current SAD expires. In such cases
the hashes to be signed may not all be available when the authoriza�on is performed, for example in
case of mul�ple signatures applied to a PDF file with a single creden�al. Further hashes should then
be passed as an input to creden�als/extendTransac�on to make each SAD calcula�on dependent on
the data to be signed. This approach may break the support of SCAL 2 requirements, therefore a



remote signing service MAY fail if the hash parameter does not contain a number of hash values
corresponding to the value in numSignatures.

Input

This method allows the following parameters:
Parameter Presence Value Descrip�on

creden�alID REQUIRED String The creden�alID as defined in the Input parameter table in
creden�als/info.

numSignatures REQUIRED Number The number of signatures to authorize. Mul�-signature transac�ons can
be obtained by using a combina�on of passing an array of hash values
and calling the signatures/signHash method, as defined in
signatures/signHash, mul�ple �mes.

hashes REQUIRED
Condi�onal

Array of String One or more Base64-encoded hash values to be signed. It allows the
server to bind the SAD to the hash(es), thus preven�ng an authoriza�on
to be used to sign a different content. If the SCAL parameter returned by
creden�als/info method, as defined in creden�als/info, for the current
creden�alID is “2” the hash parameter SHALL be used and the number
of hash values SHOULD correspond to the value in numSignatures. If the
SCAL parameter is “1”, the hash parameter is OPTIONAL.

hashAlgorithmOID REQUIRED
Condi�onal

String String containing the OID of the hash algorithm used to generate the
hashes.

authData REQUIRED
Condi�onal

Array of
authen�ca�on
objects

The authen�ca�on objects as described by the authen�ca�on object
types in creden�als/info. It SHALL be used only when auth/mode from
creden�als/info is “explicit”.

descrip�on OPTIONAL String A free form descrip�on of the authoriza�on transac�on in the lang
language. The maximum size of the string is 500 characters. It can be
useful to provide some hints about the occurring transac�on.

clientData OPTIONAL String The clientData as defined in the Input parameter table in
oauth2/authorize.

Output

With HTTP status code 200, the method returns the Signature Ac�va�on Data using the
“applica�on/json” format:

A�ribute Presence Value Descrip�on

SAD REQUIRED String The Signature Ac�va�on Data (SAD) to be used as input to the signatures/signHash
method, as defined in signatures/signHash.

expiresIn OPTIONAL Number The life�me in seconds of the SAD. If omi�ed, the default expira�on �me is 3600 (1
hour).

With HTTP status code 202 the method indicates that some authoriza�on is s�ll underway. The
result contains a handle that can be used to poll the state of the authoriza�on via
creden�als/authorizeCheck.

A�ribute Presence Value Descrip�on

handle REQUIRED String An opaque handle that can be used to request the state of the authoriza�on.

Error Case Status
Code

Error Error Descrip�on



Error Case Status
Code

Error Error Descrip�on

The authoriza�on header does not match the
pa�ern “Bearer [sessionKey]”

400 
(bad
request) 

invalid_request Malformed authoriza�on
header.

Missing or not String “creden�alID” parameter 400 
(bad
request) 

invalid_request Missing (or invalid type)
string parameter creden�alID

Invalid “creden�alID” parameter 400 
(bad
request) 

invalid_request Invalid parameter
creden�alID

Signing key for “creden�alID” is disabled 400 
(bad
request) 

invalid_request The creden�al iden�fied by
creden�alID is disabled

Missing or not integer “numSignatures” parameter 400 
(bad
request) 

invalid_request Missing (or invalid type)
integer parameter
numSignatures

“numSignatures” < 1 400 
(bad
request) 

invalid_request Invalid value for parameter
numSignatures

“numSignatures” > “mul�sign” 400 
(bad
equrest) 

invalid_request Numbers of signatures is too
high

Invalid authen�ca�on data 400 
(bad
request) 

invalid_authen�ca�on_data The authen�ca�on data is
invalid

Creden�al locked 400 
(bad
request) 

invalid_request Creden�al locked

Note 29: In case wrong authen�ca�on data is provided several �mes, the remote signing service
MAY lock the creden�al or the usage of respec�ve authen�ca�on objects. The policy adopted
by the RSSP in this regard is out of the scope of this specifica�on.

Sample Request

POST /csc/v2/credentials/authorize HTTP/1.1 
Host: service.domain.org 
Content-Type: application/json 
Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA 
 
{  
   "credentialID":"GX0112348", 
   "numSignatures":2, 
   "hashes":[  
      "sTOgwOm+474gFj0q0x1iSNspKqbcse4IeiqlDg/HWuI=", 
      "c1RPZ3dPbSs0NzRnRmowcTB4MWlTTnNwS3FiY3NlNEllaXFsRGcvSFd1ST0=" 
   ], 
   "hashAlgorithmOID": "2.16.840.1.101.3.4.2.1", 
   "authData": [ 
        { 
            "id": "PIN", 
            "value": "123456" 
        }, 
        { 
            "id": "OTP", 
            "value": "738496" 



        } 
   ], 
   "clientData":"12345678" 
}

cURL example

curl -X POST 
     -H "Content-Type: application/json" 
     -H "Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA" 
     -d '{ "credentialID": "GX0112348", 
           "numSignatures": 2, 
           "hashes": [ "sTOgwOm+474gFj0q0x1iSNspKqbcse4IeiqlDg/HWuI=", 
           "c1RPZ3dPbSs0NzRnRmowcTB4MWlTTnNwS3FiY3NlNEllaXFsRGcvSFd1ST0=" 
           ], 
       "hashAlgorithmOID": "2.16.840.1.101.3.4.2.1", 
           "authData": [ 
                { 
                    "id": "PIN", 
                    "value": "123456" 
                }, 
                { 
                    "id": "OTP", 
                    "value": "738496" 
                } 
           ], 
           "clientData": "12345678" }' 
     https://service.domain.org/csc/v2/credentials/authorize

Sample Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8 
 
{ 
   "SAD":"_TiHRG-bAH3XlFQZ3ndFhkXf9P24/CKN69L8gdSYp5_pw" 
}

Sample Response

HTTP/1.1 202 OK
Content-Type: application/json;charset=UTF-8 
 
{ 
   "handle": "878287f37b2bv293bv2bv237bv297bvbv" 
}

11.7 creden�als/authorizeCheck

Descrip�on

A�er a creden�als/authorize with HTTP result code 202, the client may use the handle returned to
poll the authoriza�on state.

Input

This method allows the following parameters:



Parameter Presence Value Descrip�onParameter Presence Value Descrip�on

handle REQUIRED String The handle value returned from creden�als/authorize.

Output

With HTTP status code 200, the method returns the Signature Ac�va�on Data using the
“applica�on/json” format:

A�ribute Presence Value Descrip�on

SAD REQUIRED String The Signature Ac�va�on Data (SAD) to be used as input to the signatures/signHash
method, as defined in signatures/signHash.

expiresIn OPTIONAL Number The life�me in seconds of the SAD. If omi�ed, the default expira�on �me is 3600 (1
hour).

With HTTP status code 202 the method indicates that some authoriza�on is s�ll underway. The
result contains a handle that can be used to poll the state of the authoriza�on via repeated calls to
creden�als/authorizeCheck.

A�ribute Presence Value Descrip�on

handle REQUIRED String An opaque handle that can be used to request the state of the authoriza�on.

Error Case Status
Code

Error Error Descrip�on

The authoriza�on header does not match the pa�ern
“Bearer [sessionKey]”

400 
(bad
request) 

invalid_request Malformed
authoriza�on
header.

Invalid “handle” parameter 400 
(bad
request) 

invalid_request Invalid parameter
handle

Invalid authen�ca�on data 400 
(bad
request) 

invalid_authen�ca�on_data The authen�ca�on
data is invalid

Creden�al locked 400 
(bad
request) 

invalid_request Creden�al locked

Note 30: In case wrong authen�ca�on data is provided several �mes, the remote signing service
MAY lock the creden�al or the usage of respec�ve authen�ca�on objects. The policy adopted
by the RSSP in this regard is out of the scope of this specifica�on.

Sample Request

POST /csc/v2/credentials/authorizeCheck HTTP/1.1 
Host: service.domain.org 
Content-Type: application/json 
Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA 
 
{  
   "handle":"878287f37b2bv293bv2bv237bv297bvbv" 
}

cURL example



curl -X POST 
     -H "Content-Type: application/json" 
     -H "Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA" 
     -d '{ "handle":"878287f37b2bv293bv2bv237bv297bvbv" }' 
     https://service.domain.org/csc/v2/credentials/authorizeCheck

Sample Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8 
 
{ 
   "SAD": "_TiHRG-bAH3XlFQZ3ndFhkXf9P24/CKN69L8gdSYp5_pw" 
}

Sample Response

HTTP/1.1 202 OK
Content-Type: application/json;charset=UTF-8 
 
{ 
   "handle": "878287f37b2bv293bv2bv237bv297bvbv" 
}

11.8 creden�als/getChallenge

Descrip�on

Get a challenge for the referenced authen�ca�on object.

Input

This method allows the following parameters:
Parameter Presence Value Descrip�on

creden�alID REQUIRED String The iden�fier associated to the creden�al.

authObjectID REQUIRED String The iden�fier of the authen�ca�on object we need a challenge for.

Output

With HTTP status code 200, the method returns a challenge:

A�ribute Presence Value Descrip�on

challenge REQUIRED String The authen�ca�on object challenge.

With HTTP status code 204, the method indicates that a challenge has been sent by out of band
means, returning no output values.

Error Case Status
Code

Error Error Descrip�on

The authoriza�on header does not match the pa�ern “Bearer
[sessionKey]”

400 
(bad
request) 

invalid_request Malformed authoriza�on
header.



Error Case Status
Code

Error Error Descrip�on

Invalid “creden�alID” parameter 400 
(bad
request) 

invalid_request Invalid parameter
creden�alID

Invalid “authObjectID” parameter 400 
(bad
request) 

invalid_request Invalid parameter
authObjectID

Sample I - in-band challenge

Sample Request

POST /csc/v2/credentials/getChallenge HTTP/1.1 
Host: service.domain.org 
Content-Type: application/json 
Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA 
 
{  
   "credentialID": "GX0112348", 
   "authObjectID": "fallback question" 
}

cURL example

curl -X POST 
     -H "Content-Type: application/json" 
     -H "Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA" 
     -d '{  
        "credentialID": "GX0112348", 
        "authObjectID": "fallback question" 
     }' 
     https://service.domain.org/csc/v2/credentials/getChallenge

Sample Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8 
 
{ 
   "challenge": "What's your mother's birth name?" 
}

Sample II - out-of-band challenge

Sample Request

POST /csc/v2/credentials/getChallenge HTTP/1.1 
Host: service.domain.org 
Content-Type: application/json 
Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA 
 
{  
   "credentialID": "GX0112348", 
   "authObjectID": "OTP" 
}

cURL example



curl -X POST 
     -H "Content-Type: application/json" 
     -H "Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA" 
     -d '{  
        "credentialID": "GX0112348", 
        "authObjectID": "OTP" 
     }' 
     https://service.domain.org/csc/v2/credentials/getChallenge

Sample Response

HTTP/1.1 204 OK

11.9 creden�als/extendTransac�on

Descrip�on

Extends the validity of a mul�-signature transac�on authoriza�on by obtaining a new Signature
Ac�va�on Data (SAD). This method SHALL be used in case of mul�-signature transac�on when the
API method signatures/signHash, as defined in signatures/signHash, is invoked mul�ple �mes with a
single creden�al authoriza�on event. 
It can also be used to renew a SAD, before it expires, when signature opera�ons take longer than
allowed by the expiresIn value. Expired SAD cannot be extended.

The RSSP SHALL invalidate the SAD when the number of authorized signatures, specified with
numSignatures in the creden�al authoriza�on event, has been created.

Input

This method allows the following parameters:

Parameter Presence Value Descrip�on

creden�alID REQUIRED String The creden�alID as defined in the Input parameter table in creden�als/info.

hashes REQUIRED
Condi�onal

Array
of
String

One or more Base64-encoded hash values to be signed. It allows the server to
bind the new SAD to the hash, thus preven�ng an authoriza�on to be used to
sign a different content. It SHALL be used if the SCAL parameter returned by
creden�als/info, as defined in creden�als/info, for the current creden�alID is “2”
, otherwise it is OPTIONAL.

hashAlgorithmOID REQUIRED
Condi�onal

String String containing the OID of the hash algorithm used to generate the hashes.

SAD REQUIRED String The current unexpired Signature Ac�va�on Data. This token is returned by the
creden�als/authorize, as defined in creden�als/authorize, or by the previous call
to creden�als/extendTransac�on.

clientData OPTIONAL String The clientData as defined in the Input parameter table in oauth2/authorize.

Note 31: This method can be used for applying mul�ple signatures to a PDF document from a single
user, e.g. to sign separately different parts of the document, with a single creden�al
authoriza�on event. The PDF standard adopts nested signatures so the hashes for mul�ple
signatures can only be calculated a�er the previous signature has been created. This method
allows to calculate a new SAD based on new hash values that were not available when the
creden�al authoriza�on event occurred. The sequence diagram in Create a remote mul�-
signatures transac�on with a PDF document shows this use case.



Output

This method returns the following values using the “applica�on/json” format:

A�ribute Presence Value Descrip�on

SAD REQUIRED String The new Signature Ac�va�on Data required to sign mul�ple �mes with a single
authoriza�on.

expiresIn OPTIONAL Number The life�me in seconds of the SAD. If omi�ed, the default expira�on �me is 3600 (1
hour).

Error Case Status
Code

Error Error Descrip�on

The authoriza�on header does not match the pa�ern “Bearer
[sessionKey]”

400 
(bad
request) 

invalid_request Malformed authoriza�on
header.

Note 32: In case a wrong PIN or OTP is provided several �mes, the remote signing service MAY lock
the creden�al or the usage of the PIN or OTP. The policy adopted by the RSSP in this regard is
out of the scope of this specifica�on.

Sample Request

POST /csc/v2/credentials/extendTransaction HTTP/1.1 
Host: service.domain.org 
Content-Type: application/json 
Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA 
 
{  
   "credentialID":"GX0112348", 
   "hashes":[  
      "WlTTnNwS3FiY3NlNEllaXFsRGcvSFd1ST0=" 
   ], 
   "hashAlgorithmOID": "2.16.840.1.101.3.4.2.1", 
   "SAD":"_TiHRG-bAH3XlFQZ3ndFhkXf9P24/CKN69L8gdSYp5_pw", 
   "clientData":"12345678" 
}

cURL example

curl -X POST 
     -H "Content-Type: application/json" 
     -H "Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA" 
     -d '{ "credentialID": "GX0112348", 
           "hashes": [ "WlTTnNwS3FiY3NlNEllaXFsRGcvSFd1ST0=" ], 
       "hashAlgorithmOID": "2.16.840.1.101.3.4.2.1", 
           "SAD": "_TiHRG-bAH3XlFQZ3ndFhkXf9P24/CKN69L8gdSYp5_pw", 
           "clientData": "12345678" }' 
     https://service.domain.org/csc/v2/credentials/extendTransaction

Sample Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8 
 
{ 



   "SAD":"1/UsHDJ98349h9fgh9348hKKHDkHWVkl/8hsAW5usc8_5=" 
}

11.10 signatures/signHash

Descrip�on

Calculate the remote digital signature of one or mul�ple hash values provided in input.

This method requires service and creden�al authoriza�on.

The signing applica�on MUST pass an access token with scope “service” or “creden�al” in the
“Authoriza�on” HTTP header as defined in RFC 6750 [12].

If the creden�al authoriza�on mode is “explicit”, the signing applica�on MUST pass Signature
Ac�va�on Data (SAD) in the SAD request parameter (see below). SAD may be obtained from
creden�al/authorize.

If the creden�al authoriza�on mode is “oauth2code” and the access token passed in the
“Authoriza�on” HTTP header has scope “service”, the signing applica�on MUST pass an access token
with scope “creden�al” in the SAD request parameter. This is not required, if the the access token
passed in the “Authoriza�on” HTTP header has scope “creden�al”.

In case of mul�-signature transac�ons, the SAD SHALL be updated with
creden�als/extendTransac�on, as defined in creden�als/extendTransac�on, every �me this method
is invoked un�l the maximum number of authorized signatures has been generated.

Input

This method allows the following parameters:
Parameter Presence Value Descrip�on

creden�alID REQUIRED String The creden�alID as defined in the Input parameter table in creden�als/info.

SAD REQUIRED
Condi�onal

String The Signature Ac�va�on Data returned by the Creden�al Authoriza�on
methods. Not needed if the signing applica�on has passed an access token in
the “Authoriza�on” HTTP header with scope “creden�al”, which is also good for
the creden�al iden�fied by credentialID.  
Note: For backward compa�bility, signing applica�ons MAY pass access tokens
with scope “creden�al” in this parameter.

hashes REQUIRED Array
of
String

One or more hash values to be signed. This parameter SHALL contain the
Base64-encoded raw message digest(s).

hashAlgorithmOID REQUIRED
Condi�onal

String The OID of the algorithm used to calculate the hash value(s). This parameter
SHALL be omi�ed or ignored if the hash algorithm is implicitly specified by the
signAlgo algorithm. Only hashing algorithms as strong or stronger than SHA256
SHALL be used. The hash algorithm SHOULD follow the recommenda�ons of
ETSI TS 119 312 [21].

signAlgo REQUIRED String The OID of the algorithm to use for signing. It SHALL be one of the values
allowed by the creden�al as returned in keyAlgo by the creden�als/info
method, as defined in creden�als/info or by creden�als/list method, as defined
in creden�als/list.

signAlgoParams REQUIRED
Condi�onal

String The Base64-encoded DER-encoded ASN.1 signature parameters, if required by
the signature algorithm. Some algorithms like RSASSA-PSS, as defined in RFC
8017 [18], may require addi�onal parameters.



Parameter Presence Value Descrip�on

opera�onMode OPTIONAL String The type of opera�on mode requested to the remote signing server. It SHALL
take one of the following values: 

“A”: an asynchronous opera�on mode is requested. 
“S”: a synchronous opera�on mode is requested. 

The default value is “S”, so if the parameter is omi�ed then the remote signing
server will manage the request in synchronous opera�on mode.

validity_period OPTIONAL 
Condi�onal

Integer Maximum period of �me, expressed in milliseconds, un�l which the server
SHALL keep the request outcome(s) available for the client applica�on retrieval.
This parameter MAY be specified only if the parameter opera�onMode is “A”. If
the parameter opera�onMode is not “A” and this parameter is specified its
value SHALL be ignored. The RSSP SHOULD define in its service policy the
default and maximum values of this parameter. If the RSSP does not define in its
service policy any default and maximum values of this parameter it means that
any value MAY be passed in this parameter.

response_uri OPTIONAL 
Condi�onal

String Value of one loca�on where the server will no�fy the signature crea�on
opera�on comple�on, as an URI value. This parameter MAY be specified only if
the parameter opera�onMode is “A”. If the parameter opera�onMode is not “A”
and this parameter is specified its value SHALL be ignored. If the parameter
opera�onMode is “A” and this parameter is omi�ed then the remote signing
server will not make any no�fica�on.

clientData OPTIONAL String The clientData as defined in the Input parameter table in oauth2/authorize.

Output

This method returns the following values using the “applica�on/json” format:

A�ribute Presence Value Descrip�on

signatures REQUIRED 
Condi�onal

Array
of
String

One or more Base64-encoded signed hash(s). In case of mul�ple signatures, the signed
hashes SHALL be returned in the same order as the corresponding hashes provided as
an input parameter. This value SHALL be returned when opera�onMode is not “A”.

responseID REQUIRED 
Condi�onal

String Arbitrary string value generated by the server uniquely iden�fying the response
originated from the server itself. This value SHALL be returned when opera�onMode is
“A”.

Error Case Status
Code

Error Error Descrip�on

The authoriza�on header does not match the pa�ern
“Bearer [sessionKey]”

400 
(bad
request) 

invalid_request Malformed authoriza�on
header.

Missing or not String “SAD” parameter 400 
(bad
request) 

invalid_request Missing (or invalid type) string
parameter SAD

Invalid “SAD” parameter 400 
(bad
request) 

invalid_request Invalid parameter SAD

Missing or not String “creden�alID” parameter 400 
(bad
request) 

invalid_request Missing (or invalid type) string
parameter creden�alID

Invalid “creden�alID” parameter 400 
(bad
request) 

invalid_request Invalid parameter creden�alID



Error Case Status
Code

Error Error Descrip�on

Missing or not Array “hash” parameter 400 
(bad
request) 

invalid_request Missing (or invalid type) array
parameter hash

Empty hash parameter 400 
(bad
request) 

invalid_request Empty hash array

Invalid Base64 hash element 400 
(bad
request) 

invalid_request Invalid Base64 hash string
parameter

Unauthorized hash 400 
(bad
request)

invalid_request Hash is not authorized by the
SAD.

Missing or not String “signAlgo” parameter 400 
(bad
request) 

invalid_request Missing (or invalid type) string
parameter signAlgo

Missing or not String “signAlgoParams” parameter 400 
(bad
request) 

invalid_request Missing (or invalid type) string
parameter signAlgoParams

Missing or not String “hashAlgorithmOID” parameter when
“signAlgo” is equal to “1.2.840.113549 .1.1.1”

400 
(bad
request) 

invalid_request Missing (or invalid type) string
parameter hashAlgorithmOID

Invalid “hashAlgorithmOID” parameter 400 
(bad
request) 

invalid_request Invalid parameter
hashAlgorithmOID

Invalid “signAlgo” parameter 400 
(bad
request) 

invalid_request Invalid parameter signAlgo

When present, invalid “opera�onMode” parameter 400 
(bad
request) 

invalid_request Invalid parameter
opera�onMode

When present, invalid “validity_period” parameter 400 
(bad
request) 

invalid_request Invalid parameter
validity_period

When present, out of bounds “validity_period” parameter 400 
(bad
request) 

invalid_request Out of bounds parameter
validity_period

When present, invalid “response_uri” parameter 400 
(bad
request) 

invalid_request Invalid parameter response_uri

When present, invalid “clientData” format (not string) 400 
(bad
request) 

invalid_request Invalid parameter clientData

Invalid “hashes” length 400 
(bad
request) 

invalid_request Invalid digest value length

The OTP used to generate the “SAD” is invalid 400 
(bad
request) 

invalid_otp The OTP is invalid

Expired “SAD” 400 
(bad
request) 

invalid_request SAD expired



Error Case Status
Code

Error Error Descrip�on

Expired creden�al 400 
(bad
request) 

invalid_request Signing cer�ficate ‘O=[organizat
ion],CN=[comm on_name]’ is
expired.

Sample Request

POST /csc/v2/signatures/signHash HTTP/1.1 
Host: service.domain.org 
Content-Type: application/json 
Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA 
 
{  
   "credentialID":"GX0112348", 
   "SAD":"_TiHRG-bAH3XlFQZ3ndFhkXf9P24/CKN69L8gdSYp5_pw", 
   "hashes":[  
      "sTOgwOm+474gFj0q0x1iSNspKqbcse4IeiqlDg/HWuI=", 
      "c1RPZ3dPbSs0NzRnRmowcTB4MWlTTnNwS3FiY3NlNEllaXFsRGcvSFd1ST0=" 
   ], 
   "hashAlgorithmOID":"2.16.840.1.101.3.4.2.1", 
   "signAlgo":"1.2.840.113549.1.1.1", 
   "clientData":"12345678" 
}

cURL example

curl -X POST 
     -H "Content-Type: application/json" 
     -H "Authorization: Bearer 
     4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA" 
     -d '{ "credentialID": "GX0112348", 
           "SAD": "_TiHRG-bAH3XlFQZ3ndFhkXf9P24/CKN69L8gdSYp5_pw", 
           "hashes": [ "sTOgwOm+474gFj0q0x1iSNspKqbcse4IeiqlDg/HWuI=", 
           "c1RPZ3dPbSs0NzRnRmowcTB4MWlTTnNwS3FiY3NlNEllaXFsRGcvSFd1ST0=" 
           ], 
           "hashAlgorithmOID": "2.16.840.1.101.3.4.2.1", 
           "signAlgo": "1.2.840.113549.1.1.1", 
           "clientData": "12345678"}' 
     https://service.domain.org/csc/v2/signatures/signHash

Sample Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8 
 
{ 
   "signatures": 
   [ 
      "KedJuTob5gtvYx9qM3k3gm7kbLBwVbEQRl26S2tmXjqNND7MRGtoew==", 
      "Idhef7xzgtvYx9qM3k3gm7kbLBwVbE98239S2tm8hUh85KKsfdowel==" 
   ] 
}

Sample Request

POST /csc/v2/signatures/signHash HTTP/1.1 
Host: service.domain.org 
Content-Type: application/json 
Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA 



 
{  
   "credentialID":"GX0112348", 
   "SAD":"_TiHRG-bAH3XlFQZ3ndFhkXf9P24/CKN69L8gdSYp5_pw", 
   "hashes":[  
      "sTOgwOm+474gFj0q0x1iSNspKqbcse4IeiqlDg/HWuI=", 
      "c1RPZ3dPbSs0NzRnRmowcTB4MWlTTnNwS3FiY3NlNEllaXFsRGcvSFd1ST0=" 
   ], 
   "hashAlgorithmOID":"2.16.840.1.101.3.4.2.1", 
   "signAlgo":"1.2.840.113549.1.1.1", 
   "operationMode": "A", 
   "clientData":"12345678" 
}

cURL example

curl -X POST 
     -H "Content-Type: application/json" 
     -H "Authorization: Bearer 
     4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA" 
     -d '{ "credentialID": "GX0112348", 
           "SAD": "_TiHRG-bAH3XlFQZ3ndFhkXf9P24/CKN69L8gdSYp5_pw", 
           "hashes": [ "sTOgwOm+474gFj0q0x1iSNspKqbcse4IeiqlDg/HWuI=", 
           "c1RPZ3dPbSs0NzRnRmowcTB4MWlTTnNwS3FiY3NlNEllaXFsRGcvSFd1ST0=" 
           ], 
           "hashAlgorithmOID": "2.16.840.1.101.3.4.2.1", 
           "signAlgo": "1.2.840.113549.1.1.1", 
           "operationMode": "A", 
           "clientData": "12345678"}' 
     https://service.domain.org/csc/v2/signatures/signHash

Sample Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8 
 
{ 
   "responseID":"158112-652341-khj" 
}

Sample Request

POST /csc/v2/signatures/signHash HTTP/1.1 
Host: service.domain.org 
Content-Type: application/json 
Authorization: Bearer 5/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA 
 
{  
   "credentialID":"GX0112348", 
   "hashes":[  
      "sTOgwOm+474gFj0q0x1iSNspKqbcse4IeiqlDg/HWuI=", 
      "c1RPZ3dPbSs0NzRnRmowcTB4MWlTTnNwS3FiY3NlNEllaXFsRGcvSFd1ST0=" 
   ], 
   "hashAlgorithmOID":"2.16.840.1.101.3.4.2.1", 
   "signAlgo":"1.2.840.113549.1.1.1", 
   "operationMode": "A", 
   "clientData":"12345678" 
}

cURL example



curl -X POST 
     -H "Content-Type: application/json" 
     -H "Authorization: Bearer 
     5/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA" 
     -d '{ "credentialID": "GX0112348", 
           "hashes": [ "sTOgwOm+474gFj0q0x1iSNspKqbcse4IeiqlDg/HWuI=", 
           "c1RPZ3dPbSs0NzRnRmowcTB4MWlTTnNwS3FiY3NlNEllaXFsRGcvSFd1ST0=" 
           ], 
           "hashAlgorithmOID": "2.16.840.1.101.3.4.2.1", 
           "signAlgo": "1.2.840.113549.1.1.1", 
           "operationMode": "A", 
           "clientData": "12345678"}' 
     https://service.domain.org/csc/v2/signatures/signHash

Sample Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8 
 
{ 
   "responseID":"158112-652341-khj" 
}

11.11 signatures/signDoc

Descrip�on

Create one or more AdES signatures. Either the documents to be signed or the SDRs (in this
specifica�on it is intended to be the hash values of the documents to be signed) SHALL be provided
to the method. An AdES signature will be created for each of these input components. Other
components are used to select the type of signature that will be created for each document or
document representa�on.

This method requires service and creden�al authoriza�on as defined in signatures/signHash.

Input

This method allows the following parameters:
Parameter Presence Value Descrip�on

creden�alID REQUIRED
Condi�onal

String The creden�alID as defined in the Input parameter table in creden�als/info.
At least one of the two values creden�alID and signatureQualifier SHALL be
present. Both values MAY be present.

signatureQualifier REQUIRED
Condi�onal

String Iden�fier of the signature type to be created, e.g. “eu_eidas_qes” to denote
a Qualified Electronic Signature according to eIDAS. This specifica�on defines
a set of such iden�fiers (see table below), service providers can also define
and use their own iden�fiers. At least one of the two values creden�alID and
signatureQualifier SHALL be present. Both values MAY be present.

SAD REQUIRED
Condi�onal

String The Signature Ac�va�on Data returned by the Creden�al Authoriza�on
methods. Not needed if the signing applica�on has passed an access token
with scope “creden�al” in the “Authoriza�on” HTTP header, which is also
good for the creden�al iden�fied by credentialID or the signature qualifier
iden�fied by signatureQualifier.  
Note: For backward compa�bility, signing applica�ons MAY pass access
tokens with scope “creden�al” in this parameter.



Parameter Presence Value Descrip�on

documentDigests REQUIRED 
Condi�onal

JSON
Array

An array containing JSON objects containing a hash value represen�ng one or
more SDRs, the respec�ve digest algorithm OID used to calculate this hash
value and further request parameters (see below). This parameter or the
parameter documents MUST be present in a request. Otherwise the method
SHALL return an error condi�on.

documents REQUIRED 
Condi�onal

JSON
array

An array containing JSON objects, each of them containing a base64-encoded
document content to be signed and further request parameter. This
parameter or the parameter documentDigests MUST be present in a request.
Otherwise the method SHALL return an error condi�on.

opera�onMode OPTIONAL String The opera�onMode as defined in the Input parameter table in
signatures/signHash.

validity_period OPTIONAL 
Condi�onal

Integer The validity_period as defined in the Input parameter table in
signatures/signHash.

response_uri OPTIONAL 
Condi�onal

String The response_uri as defined in the Input parameter table in
signatures/signHash.

clientData OPTIONAL String The clientData as defined in the Input parameter table in oauth2/authorize.

returnValida�onInfo OPTIONAL Boolean This parameter SHALL be set to “true” to request the service to return the
“valida�onInfo” as defined below. The default value is “false”, i.e. no
“valida�onInfo” info is provided.  
This parameter SHALL be supported in conjunc�on with “signature_format”
“P”, “conformance_level” “AdES-B-LT” and use of “documentDigests”. For all
other cases, the info methods states if this feature is supported or not.

This table lists the pre-defined signature qualifier to be used in conjunc�on with the 
signatureQualifier parameter.

Note 33: *signatureQualifiers follow the syntax X_Y_Z (e.g. eu_eidas_qes) where: X: The ISO 3166-1
[22] Alpha-2 code of the Country where the signature legisla�on is defined (e.g. eu for Europe).
Y: The shor�orm name of the legisla�on (e.g. eidas for Electronic Iden�fica�on And Trust
Services) Z: The shor�orm name of the signature type defined by the legisla�on (e.g. qes for
Qualified Electronic Signatures)

Iden�fier Descrip�on

eu_eidas_qes This iden�fier refers to a qualified electronic signature under eIDAS.

eu_eidas_aes This iden�fier refers to an advanced electronic signature under eIDAS.

eu_eidas_aesqc This iden�fier refers to an advanced electronic signature with qualified cer�ficate under eIDAS.

eu_eidas_qeseal This iden�fier refers to a qualified electronic seal under eIDAS.

eu_eidas_aeseal This iden�fier refers to an advanced electronic seal under eIDAS.

eu_eidas_aesealqc This iden�fier refers to an advanced electronic seal with qualified cer�ficate under eIDAS.

za_ecta_aes This iden�fier refers to an advanced electronic signature defined by the South African ECT Act

za_ecta_oes This iden�fier refers to an ordinary electronic signature defined by the South African ECT Act

The documentDigests parameter is a JSON array composed of JSON Object composed by the
following parameters:

hashes
hashAlgorithmOID
signature_format
conformance_level
signAlgo



signAlgoParams
signed_envelope_property

specified according to the following table.

Parameter Presence Value Descrip�on

hashes REQUIRED 
Condi�onal

Array of
String

One or more hash values represen�ng one or more SDRs. This
parameter SHALL contain the Base64-encoded hash(es) of the
documents to be signed.  
In case a hashes were provided for the creden�al authoriza�on, then
the RSSP SHALL verify that each of the hashes in this parameter
corresponds to one of the hashes provided in the creden�al
authoriza�on.

hashAlgorithmOID REQUIRED 
Condi�onal

String Hashing algorithm OID used to calculate document(s) hash(es). This
parameter MAY be omi�ed or ignored if the hash algorithm is
implicitly specified by the signAlgo algorithm. Only hashing algorithms
as strong or stronger than SHA256 SHALL be used. The hash algorithm
SHOULD follow the recommenda�ons of ETSI TS 119 312 [21].

signature_format REQUIRED String The required signature format: 

“C” SHALL be used to request the crea�on of a CAdES
signature; 
“X” SHALL be used to request the crea�on of a XAdES
signature. 
“P” SHALL be used to request the crea�on of a PAdES
signature. 
“J” SHALL be used to request the crea�on of a JAdES
signature. 

conformance_level OPTIONAL String The required signature conformance level: 

“Ades-B-B” SHALL be used to request the crea�on of a a
baseline 191x2 level B signature; 
“Ades-B-T” SHALL be used to request the crea�on of a a
baseline 191x2 level T signature; 
“Ades-B-LT” SHALL be used to request the crea�on of a a
baseline 191x2 level LT signature; 
“Ades-B-LTA” SHALL be used to request the crea�on of a a
baseline 191x2 level LTA signature; 
“Ades-B” SHALL be used to request the crea�on of a a baseline
etsits level B signature; 
“Ades-T” SHALL be used to request the crea�on of a a baseline
etsits level T signature; 
“Ades-LT” SHALL be used to request the crea�on of a a
baseline etsits level LT signature; 
“Ades-LTA” SHALL be used to request the crea�on of a a
baseline etsits level LTA signature. 

The parameter is op�onal. The default level is AdES-B-B in case it is
omi�ed. If a �mestamp is needed its request and inclusion is
managed by the signing server according to signing server
configura�on and policies.

signAlgo REQUIRED String The signAlgo as defined in the Input parameter table in
signatures/signHash. If the parameter hashAlgorithmOID defined in
the documentDigests Object is passed and is in contradic�on with the
value of this parameter signAlgo the method SHALL return an error
condi�on.

signAlgoParams REQUIRED 
Condi�onal

String The signAlgoParams as defined in the Input parameter table in
signatures/signHash.



Parameter Presence Value Descrip�on

signed_props OPTIONAL Array of
a�ribute

List of signed a�ributes. The a�ributes that may be included depend
on the signature format and the signature crea�on policy. The
contents of a�ribute object are described below.

signed_envelope_property OPTIONAL 
Condi�onal

String The required property concerning the signed envelope whose
possible values depend on the value of the signature_format
parameter. 
According to the type of selected signature_format a client
applica�on may specify the following signature proper�es. 

CAdES 
Detached 
A�ached 
Parallel 

PAdES 
Cer�fica�on 
Revision 

XAdES 
Enveloped 
Enveloping 
Detached 

JAdES 
Detached 
A�ached 
Parallel 

The default values are the following ones.

CAdES 
A�ached 

PAdES 
Cer�fica�on 

XAdES 
Enveloped 

JAdES 
A�ached 

The documents parameter is a JSON array composed of JSON Object composed by the following
parameters:

document
signature_format
conformance_level
signAlgo
signAlgoParams
signed_envelope_property

specified according to the following table.

Parameter Presence Value Descrip�on

document REQUIRED< String base64-encoded document content to be signed. 
In case a hashes were provided for the creden�al authoriza�on, then
the RSSP SHALL verify that the hash of the document in this
parameter corresponds to one of the hashes provided in the
creden�al authoriza�on.



Parameter Presence Value Descrip�on

signature_format REQUIRED String The required signature format: 

“C” SHALL be used to request the crea�on of a CAdES
signature; 
“X” SHALL be used to request the crea�on of a XAdES
signature. 
“P” SHALL be used to request the crea�on of a PAdES
signature. 
“J” SHALL be used to request the crea�on of a JAdES
signature. 

conformance_level OPTIONAL String The required signature conformance level: 

“Ades-B-B” SHALL be used to request the crea�on of a a
baseline 191x2 level B signature; 
“Ades-B-T” SHALL be used to request the crea�on of a a
baseline 191x2 level T signature; 
“Ades-B-LT” SHALL be used to request the crea�on of a a
baseline 191x2 level LT signature; 
“Ades-B-LTA” SHALL be used to request the crea�on of a a
baseline 191x2 level LTA signature; 
“Ades-B” SHALL be used to request the crea�on of a a
baseline etsits level B signature; 
“Ades-T” SHALL be used to request the crea�on of a a
baseline etsits level T signature; 
“Ades-LT” SHALL be used to request the crea�on of a a
baseline etsits level LT signature; 
“Ades-LTA” SHALL be used to request the crea�on of a a
baseline etsits level LTA signature. 

The parameter is op�onal. The default level is AdES-B-B in case it is
omi�ed. If a �mestamp is needed its request and inclusion is
managed by the signing server according to signing server
configura�on and policies.

signAlgo REQUIRED String The signAlgo as defined in the Input parameter table in
signatures/signHash. If the parameter hashAlgorithmOID defined in
the documentDigests Object is passed and is in contradic�on with the
value of this parameter signAlgo the method SHALL return an error
condi�on.

signAlgoParams REQUIRED 
Condi�onal

String The signAlgoParams as defined in the Input parameter table in
signatures/signHash.

signed_props OPTIONAL Array of
a�ribute

List of signed a�ributes. The a�ributes that may be included depend
on the signature format and the signature crea�on policy. The
contents of a�ribute object are described below.



Parameter Presence Value Descrip�on

signed_envelope_property OPTIONAL 
Condi�onal

String The required property concerning the signed envelope whose
possible values depend on the value of the signature_format
parameter. 
According to the type of selected signature_format a client
applica�on may specify the following signature proper�es. 

CAdES 
Detached 
A�ached 
Parallel 

PAdES 
Cer�fica�on 
Revision 

XAdES 
Enveloped 
Enveloping 
Detached 

JAdES 
Detached 

A�ached 
Parallel 

The defaul values are the following ones.

CAdES 
A�ached 

PAdES 
Cer�fica�on 

XAdES 
Enveloped 

JAdES 
A�ached 

The ‘a�ribute’ is a JSON Object composed by the following a�ributes:

attribute_name
attribute_value

specified according to the following table.

Parameter Presence Value Descrip�on

a�ribute_name REQUIRED String Name or OID of the a�ribute/property to be included in the signature. Below the
table a list of the a�ributes/proper�es names that can be referenced in this
component in order to request the inclusion of the corresponding signed
a�ributes/proper�es in the signature. Other a�ributes and/or proper�es whose
names are defined in the table in clause 6.3 of ETSI EN 319 122-1 [29], ETSI EN 319
132-1 [30], ETSI EN 319 142-1 [31], ETSI TS 119 182-1 [32] documents may be
supported by the signing server.

a�ribute_value REQUIRED 
Condi�onal

String Depending on the a�ribute/property specified in the a�ribute_name parameter,
this parameter contains the value to be used for such a�ribute/property to be
included in the signature. When some element of this parameter is not defined the
signing server SHALL calculate it, if needed.

As an alterna�ve to the a�ributes/proper�es names listed in the table below it is also possible using
the corresponding a�ributes/proper�es oids.

a�ribute_name a�ribute_value



a�ribute_name a�ribute_value

commitment-type-indica�on This parameter contains the Base64-encoding of the a�ribute commitment-type-
indica�on defined in clause 5.2.3 of ETSI EN 319 122-1 [29].

content-hints This parameter contains the Base64-encoding of the a�ribute content-hints defined in
clause 5.2.4.1 of ETSI EN 319 122-1 [29].

mime-type This parameter contains the Base64-encoding of the a�ribute mime-type defined in
clause 5.4.2.2 of ETSI EN 319 122-1 [29].

signer-loca�on This parameter contains the Base64-encoding of the a�ribute signer-loca�on defined
in clause 5.2.5 of ETSI EN 319 122-1 [29].

content-�me-stamp This parameter contains the Base64-encoding of the a�ribute content-�me-stamp
defined in clause 5.2.8 of ETSI EN 319 122-1 [29].

signer-a�ributes-v2 This parameter contains the Base64-encoding of the a�ribute signer-a�ributes-v2
defined in clause 5.2.6.1 of ETSI EN 319 122-1 [29].

signature-policy-iden�fier This parameter contains the Base64-encoding of the a�ribute signature-policy-
iden�fier defined in clause 5.2.9.1 of ETSI EN 319 122-1 [29].

content-reference This parameter contains the Base64-encoding of the a�ribute content-reference
defined in clause 5.2.11 of ETSI EN 319 122-1 [29].

content-iden�fier This parameter contains the Base64-encoding of the a�ribute content-iden�fier
defined in clause 5.2.12 of ETSI EN 319 122-1 [29].

Loca�on This parameter contains the Base64-encoding of the a�ribute Loca�on defined in
clause 5.3 of ETSI EN 319 142-1 [31].

Reason This parameter contains the Base64-encoding of the a�ribute Reason defined in clause
5.3 of ETSI EN 319 142-1 [31].

Name This parameter contains the Base64-encoding of the a�ribute Name defined in clause
5.3 of ETSI EN 319 142-1 [31].

ContactInfo This parameter contains the Base64-encoding of the a�ribute ContactInfo defined in
clause 5.3 of ETSI EN 319 142-1 [31].

SignerRoleV2 This parameter contains the Base64-encoding of the a�ribute SignerRoleV2 defined in
clause 5.2.6 of ETSI EN 319 132-1 [30].

CommitmentTypeIndica�on This parameter contains the Base64-encoding of the a�ribute
CommitmentTypeIndica�on defined in clause 5.2.3 of ETSI EN 319 132-1 [30].

SignatureProduc�onPlaceV2 This parameter contains the Base64-encoding of the a�ribute
SignatureProduc�onPlaceV2 defined in clause 5.2.5 of ETSI EN 319 132-1 [30].

AllDataObjectsTimeStamp This parameter contains the Base64-encoding of the a�ribute
AllDataObjectsTimeStamp defined in clause 5.2.8.1 of ETSI EN 319 132-1 [30].

IndividualDataObjectsTimeStamp This parameter contains the Base64-encoding of the a�ribute
IndividualDataObjectsTimeStamp defined in clause 5.2.8.2 of ETSI EN 319 132-1 [30].

SignaturePolicyIden�fier This parameter contains the Base64-encoding of the a�ribute SignaturePolicyIden�fier
defined in clause 5.2.9 of ETSI EN 319 132-1 [30].

Output

This method returns the following values using the “applica�on/json” format:
Parameter Presence Value Descrip�on

DocumentWithSignature REQUIRED 
Condi�onal

Array
of
String

One or more Base64-encoded signatures enveloped within the
documents. This element SHALL carry a value only if the client applica�on
requested the crea�on of signature(s) enveloped within the signed
document(s) and when opera�onMode is not “A”.

SignatureObject REQUIRED 
Condi�onal

Array
of
String

One or more Base64-encoded signatures detached from the documents.
This element SHALL carry a value only if the client applica�on requested
the crea�on of detached signature(s) and when opera�onMode is not “A”.



Parameter Presence Value Descrip�on

responseID REQUIRED 
Condi�onal

String The responseID as defined in the Output a�ribute table in
signatures/signHash.

valida�onInfo REQUIRED 
Condi�onal

JSON
Object

The valida�onInfo is a JSON Object containing valida�on data that SHALL
be included in the signing response if requested using the input
parameter “returnValida�onInfo”.

The validationInfo is a JSON Object composed by the following parameters:

ocsp
crl
certificates

specified according to the following table.

Parameter Presence Value Descrip�on

ocsp REQUIRED 
Condi�onal

Array
of
String

ocsp is an array of base64 encoded strings containing the DER-encoded ASN.1 data
structures of type OCSPResponse according to RFC 6960 [33]. This value SHALL be
included if at least one OCSP response is needed to validate the created signature and
�mestamps contained in the signature. It SHALL contain all needed OCSP responses. If
for the same cer�ficate an OCSP response and a CRL is available, the OCSP response
SHOULD be included.

crl REQUIRED 
Condi�onal

Array
of
String

crl is an array of base64 encoded strings containing the DER-encoded ASN.1 data
structures of type CertificateList according to RFC 5280 [8]. This value SHALL be
included if at least one CRL is needed to validate the created signature and �mestamps
contained in the signature. It SHALL contain all needed CRLs.

cer�ficates REQUIRED 
Condi�onal

Array
of
String

cer�ficates contains one or more Base64-encoded X.509v3 cer�ficates from the
cer�ficate chain used to create the respec�ve signature and �mestamps included in the
signature. This value SHALL be included if at least one cer�ficate is needed to validate
the created signature and �mestamps, which is not yet included in the signature. It
SHALL contain all needed cer�ficates.

Error Case Status
Code

Error Error Descrip�on

The authoriza�on header does not match the pa�ern
“Bearer [sessionKey]”

400 
(bad
request)

invalid_request Malformed authoriza�on header.

Missing or not String “SAD” parameter 400 
(bad
request)

invalid_request Missing (or invalid type) string
parameter SAD

Invalid “SAD” parameter 400 
(bad
request)

invalid_request Invalid parameter SAD

Missing or not String “creden�alID” parameter 400 
(bad
request)

invalid_request Missing (or invalid type) string
parameter creden�alID

Invalid “creden�alID” parameter 400 
(bad
request)

invalid_request Invalid parameter creden�alID

When present, invalid object “documentDigests”
parameter

400 
(bad
request)

invalid_request Invalid object parameter
documentDigests

When present, invalid array “documents” parameter 400 
(bad
request)

invalid_request Invalid array parameter documents



Error Case Status
Code

Error Error Descrip�on

Empty documentDigests and documents parameters 400 
(bad
request)

invalid_request Empty documentDigests and
documents objects

Both documentDigests and documents parameters
have been passed

400 
(bad
request)

invalid_request Both documentDigests and
documents parameters passed

Invalid Base64 hashes element 400 
(bad
request)

invalid_request Invalid Base64 hashes string
parameter

Invalid Base64 documents element 400 
(bad
request)

invalid_request Invalid Base64 documents string
parameter

Unauthorized documentDigests or documents 400 
(bad
request)

invalid_request documentDigests or documents are
not authorized by the SAD.

Missing or not String “signAlgo” parameter 400 
(bad
request)

invalid_request Missing (or invalid type) string
parameter signAlgo

Missing or not String “signAlgoParams” parameter 400 
(bad
request)

invalid_request Missing (or invalid type) string
parameter signAlgoParams

“hashAlgorithmOID” parameter contradic�ng with
“signAlgo” parameter

400 
(bad
request)

invalid_request String parameter hashAlgorithmOID
contradicts with signAlgo parameter

When present, invalid “hashAlgorithmOID” parameter 400 
(bad
request)

invalid_request Invalid parameter hashAlgorithmOID

Invalid “signAlgo” parameter 400 
(bad
request)

invalid_request Invalid parameter signAlgo

When present, invalid “signature_format” parameter 400 
(bad
request)

invalid_request Invalid parameter signature_format

When “documents” is passed, missing or not String
“signature_format” parameter

400 
(bad
request)

invalid_request Missing (or invalid type) string
parameter signature_format

When present, invalid “conformance_level” parameter 400 
(bad
request)

invalid_request Invalid parameter conformance_level

When present, invalid “signed_envelope_property”
parameter

400 
(bad
request)

invalid_request Invalid parameter
signed_envelope_property

When present, invalid “signed_props” parameter 400 
(bad
request)

invalid_request Invalid parameter signed_props (list
of invalid a�ributes)

When present, invalid “opera�onMode” parameter 400 
(bad
request)

invalid_request Invalid parameter opera�onMode

When present, invalid “validity_period” parameter 400 
(bad
request)

invalid_request Invalid parameter validity_period



Error Case Status
Code

Error Error Descrip�on

When present, out of bounds “validity_period”
parameter

400 
(bad
request)

invalid_request Out of bounds parameter
validity_period

When present, invalid “response_uri” parameter 400 
(bad
request)

invalid_request Invalid parameter response_uri

When present, invalid “clientData” format (not string) 400 
(bad
request)

invalid_request Invalid parameter clientData

Invalid “hashes” element length 400 
(bad
request)

invalid_request Invalid digest value length

Expired “SAD” 400 
(bad
request)

invalid_request SAD expired

Expired creden�al 400 
(bad
request)

invalid_request Signing cer�ficate ‘O=
[organiza�on],CN=[common_name]’
is expired.

Document or documentDigest to be signed does not
match one of the authorized hashes

403 
(bad
request)

invalid_hash Document or documentDigest does
not match authroized hash

Sample Request

POST /csc/v2/signatures/signDoc HTTP/1.1 Host: service.domain.org 
Content-Type: application/json 
Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA 
{ 
    "credentialID": "GX0112348", 
    "SAD": "_TiHRG-bAH3XlFQZ3ndFhkXf9P24/CKN69L8gdSYp5_pw", 
    "documentDigests": [ 
        { 
            "hashes": "sTOgwOm+474gFj0q0x1iSNspKqbcse4IeiqlDg/HWuI=", 
            "hashAlgorithmOID": "2.16.840.1.101.3.4.2.1", 
            "signature_format": "P", 
            "conformance_level": "AdES-B-T", 
            "signAlgo": "1.2.840.113549.1.1.1" 
        }, 
        { 
            "hashes": "HZQzZmMAIWekfGH0/ZKW1nsdt0xg3H6bZYztgsMTLw0=", 
            "hashAlgorithmOID": "2.16.840.1.101.3.4.2.1", 
            "signature_format": "C", 
            "conformance_level": "AdES-B-B", 
            "signAlgo": "1.2.840.113549.1.1.1" 
        } 
    ], 
    "documents": [ 
        { 
            "document": "Q2VydGlmaWNhdGVTZXJpYWxOdW1iZ…KzBTWWVJWWZZVXptU3V5MVU9DQo=", 
            "signature_format": "P", 
            "conformance_level": "AdES-B-T", 
            "signAlgo": "1.2.840.113549.1.1.1" 
        }, 
        { 
            "document": "Q2VydGlmaWNhdGVTZXJpYWxOdW1iZXI7U3… emNNbUNiL1cyQT09DQo=", 
            "signature_format": "C", 
            "conformance_level": "AdES-B-B", 
            "signed_envelope_property": "Attached", 



            "signAlgo": "1.2.840.113549.1.1.1" 
        } 
    ], 
    "clientData": "12345678" 
}

cURL example

curl -X POST 
     -H "Content-Type: application/json" 
     -H "Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA" 
     -d '{ 
    "credentialID": "GX0112348", 
    "SAD": "_TiHRG-bAH3XlFQZ3ndFhkXf9P24/CKN69L8gdSYp5_pw", 
    "documentDigests": [ 
        { 
            "hashes": "sTOgwOm+474gFj0q0x1iSNspKqbcse4IeiqlDg/HWuI=", 
            "hashAlgorithmOID": "2.16.840.1.101.3.4.2.1", 
            "signature_format": "P", 
            "conformance_level": "AdES-B-T", 
            "signAlgo": "1.2.840.113549.1.1.1" 
        }, 
        { 
            "hashes": "HZQzZmMAIWekfGH0/ZKW1nsdt0xg3H6bZYztgsMTLw0=", 
            "hashAlgorithmOID": "2.16.840.1.101.3.4.2.1", 
            "signature_format": "C", 
            "conformance_level": "AdES-B-B", 
            "signAlgo": "1.2.840.113549.1.1.1" 
        } 
    ], 
    "documents": [ 
        { 
            "document": "Q2VydGlmaWNhdGVTZXJpYWxOdW1iZ…KzBTWWVJWWZZVXptU3V5MVU9DQo=", 
            "signature_format": "P", 
            "conformance_level": "AdES-B-T", 
            "signAlgo": "1.2.840.113549.1.1.1" 
        }, 
        { 
            "document": "Q2VydGlmaWNhdGVTZXJpYWxOdW1iZXI7U3… emNNbUNiL1cyQT09DQo=", 
            "signature_format": "C", 
            "conformance_level": "AdES-B-B", 
            "signed_envelope_property": "Attached", 
            "signAlgo": "1.2.840.113549.1.1.1" 
        } 
    ], 
    "clientData": "12345678" 
}' 
https://service.domain.org/csc/v2/signatures/signDoc

Sample Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8 
{ 
    "DocumentWithSignature": 
    [ 
        "MILuLgYJKoZIhvcNAQcCoILuHz… ehEeR5ZRi5+WV5T1FpO", 
        "MIL4IAYJKoZIhvcNAQcCoIL4…YavvBxkVwJ3dFD9KbCi1qW3TxTI=" 
    ], 
    "SignatureObject": 
    [ 
        "MIAGCSqAMIACAQExDzANBglghkgBZQMEAgEFADCABgkqhkiG…Ss4rEsQV4AAAAAAAAA==", 
        "MIAGCSqGSIb3DQEHAqCAMIACAQExDzANBglghkgBZQMEqhki…W7pP1ZJFKuF2YAAAAAAA" 



    ] 
}

Sample Request

POST /csc/v2/signatures/signDoc HTTP/1.1 Host: service.domain.org 
Content-Type: application/json 
Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA 
{ 
    "signatureQualifier": "eu_eidas_qes", 
    "SAD": "_TiHRG-bAH3XlFQZ3ndFhkXf9P24/CKN69L8gdSYp5_pw", 
        "documentDigests": [ 
        { 
            "hashes": "sTOgwOm+474gFj0q0x1iSNspKqbcse4IeiqlDg/HWuI=", 
            "hashAlgorithmOID": "2.16.840.1.101.3.4.2.1", 
            "signature_format": "P", 
            "conformance_level": "AdES-B-T", 
            "signAlgo": "1.2.840.113549.1.1.1" 
        } 
    ], 
    "clientData": "12345678", 
    "returnValidationInfo":true 
}

cURL example

curl -X POST 
     -H "Content-Type: application/json" 
     -H "Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA" 
     -d '{ 
        "signatureQualifier": "eu_eidas_qes", 
    "SAD": "_TiHRG-bAH3XlFQZ3ndFhkXf9P24/CKN69L8gdSYp5_pw", 
    "documentDigests": [ 
         { 
             "hashes": "sTOgwOm+474gFj0q0x1iSNspKqbcse4IeiqlDg/HWuI=", 
             "hashAlgorithmOID": "2.16.840.1.101.3.4.2.1", 
             "signature_format": "P", 
             "conformance_level": "AdES-B-T", 
             "signAlgo": "1.2.840.113549.1.1.1" 
          } ], 
        "clientData": "12345678", 
        "returnValidationInfo":true}' 
https://service.domain.org/csc/v2/signatures/signDoc 

Sample Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8 
{ 
    "SignatureObject": 
    [ 
        "MIAGCSqAMIACAQExDzANBglghkgBZQMEAgEFADCABgkqhkiG…Ss4rEsQV4AAAAAAAAA==", 
        "MIAGCSqGSIb3DQEHAqCAMIACAQExDzANBglghkgBZQMEqhki…W7pP1ZJFKuF2YAAAAAAA" 
    ], 
    "validationInfo":{ 
        "ocsp":[ 
           "MIIJg...jSc=" 
        ], 
        "crl":[
           "MIIC4...X7M=" 
        ] 
        "certificates":[ 



           "<Base64-encoded_X.509_certificate>" 
        ] 
    } 
}

Sample Request

POST /csc/v2/signatures/signDoc HTTP/1.1 Host: service.domain.org 
Content-Type: application/json 
Authorization: Bearer 6/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA 
{ 
    "signatureQualifier": "qes_eidas", 
    "documentDigests": 
    { 
        "hashes": 
        [ 
            "sTOgwOm+474gFj0q0x1iSNspKqbcse4IeiqlDg/HWuI=", 
            "HZQzZmMAIWekfGH0/ZKW1nsdt0xg3H6bZYztgsMTLw0=" 
        ], 
        "hashAlgorithmOID": "2.16.840.1.101.3.4.2.1" 
    }, 
    " signature_format": "P", 
    " conformance_level": "AdES-B-T", 
    "signAlgo": "1.2.840.113549.1.1.1", 
    "clientData": "12345678" 
}

cURL example

curl -X POST 
     -H "Content-Type: application/json" 
     -H "Authorization: Bearer 6/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA" 
     -d '{  "signatureQualifier": "qes_eidas", 
            "documentDigests": 
            { 
                "hashes": 
                [ 
                    "sTOgwOm+474gFj0q0x1iSNspKqbcse4IeiqlDg/HWuI=", 
                    "HZQzZmMAIWekfGH0/ZKW1nsdt0xg3H6bZYztgsMTLw0=" 
                ], 
                "hashAlgorithmOID": "2.16.840.1.101.3.4.2.1" 
            }, 
            " signature_format": "P", 
            " conformance_level": "AdES-B-T", 
            "signAlgo": "1.2.840.113549.1.1.1", 
            "clientData": "12345678"}' 
https://service.domain.org/csc/v2/signatures/signDoc

Sample Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8 
{ 
    "SignatureObject": 
    [ 
        "MIAGCSqAMIACAQExDzANBglghkgBZQMEAgEFADCABgkqhkiG…Ss4rEsQV4AAAAAAAAA==", 
        "MIAGCSqGSIb3DQEHAqCAMIACAQExDzANBglghkgBZQMEqhki…W7pP1ZJFKuF2YAAAAAAA" 
    ] 
}

11.12 signatures/signPolling



Descrip�on

Request to the server to return the responses corresponding to previously sent (ini�al) digital
signature value(s) or signature(s) crea�on request when processed in asynchronous mode.

If the user is authen�cated directly by the RSSP then the userID is implicit and SHALL NOT be
specified.

Input

This method allows the following parameters:
Parameter Presence Value Descrip�on

requestID REQUIRED String The value generated by the server uniquely iden�fying the response originated from the
server itself to a previous asynchronous signature request.

userID REQUIRED 
Condi�onal

String The userID as defined in the Input parameter table in creden�als/list.

clientData OPTIONAL String The clientData as defined in the Input parameter table in oauth2/authorize.

Output

This method returns the following values using the “applica�on/json” format:
Parameter Presence Value Descrip�on

signatures REQUIRED 
Condi�onal

Array
of
String

The signatures as defined in the Output a�ribute table in
signatures/signHash. This element SHALL carry a value only if the client
applica�on requested the crea�on of digital signature value(s). This value
SHALL be returned when the requested digital signature(s) crea�on has
been completed.

DocumentWithSignature REQUIRED 
Condi�onal

Array
of
String

The DocumentWithSignature as defined in the Output a�ribute table in
signatures/signDoc. This value SHALL be returned when the requested
signature(s) crea�on has been completed.

SignatureObject REQUIRED 
Condi�onal

Array
of
String

The SignatureObject as defined in the Output a�ribute table in
signatures/signDoc. This value SHALL be returned when the requested
signature(s) crea�on has been completed.

Error Case Status
Code

Error Error Descrip�on

The previous asynchronous signature
request has been accepted for
processing

202 
(accepted)

accepted_request The previous asynchronous signature request has
been accepted for processing, but the processing
has not yet been completed.

The authoriza�on header does not
match the pa�ern “Bearer
[sessionKey]”

400 
(bad
request)

invalid_request Malformed authoriza�on header.

Missing or not String “requestID”
Parameter

400 
(bad
request)

invalid_request Missing (or invalid type) string parameter
requestID

Invalid requestID parameter 400 
(bad
request)

invalid_request Invalid parameter requestID

Not empty “userID” parameter in case
of user- specific authoriza�on

400 
(bad
request)

invalid_request userID parameter SHALL be null



Error Case Status
Code

Error Error Descrip�on

Invalid “userID” format in case of no
user-specific authoriza�on

400 
(bad
request)

invalid_request Invalid parameter “userID”

When present, invalid “clientData”
format (not string)

400 
(bad
request)

invalid_request Invalid parameter clientData

Sample Request

POST /csc/v2/signatures/signPolling  HTTP/1.1 
Host: service.domain.org 
Content-Type: application/json 
Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA 
 
{ 
   "requestID":"158112-652341-khj", 
   "clientData":"12345678" 
}

cURL example

curl -X POST 
     -H "Content-Type: application/json" 
     -H "Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA" 
     -d '{ "requestID":"158112-652341-khj", 
           "clientData": "12345678" }' 
     https://service.domain.org/csc/v2/signatures/signPolling

Sample Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8 
 
{ 
    "signatures": 
    [ 
        "KedJuTob5gtvYx9qM3k3gm7kbLBwVbEQRl26S2tmXjqNND7MRGtoew==", 
        "Idhef7xzgtvYx9qM3k3gm7kbLBwVbE98239S2tm8hUh85KKsfdowel==" 
    ] 
 
}

11.13 signatures/�mestamp

Descrip�on

Generate a �me-stamp token for the input hash value. The �me-stamp token can be generated
directly by the RSSP or by a Time Stamping Authority connected to it.

The reason to implement this method instead of providing �me-stamp services through widespread
RFC 3161 [2] protocols directly is to facilitate the crea�on of long-term valida�on digital signatures
and to support billing opera�ons. In both cases, the RSSP provider can offer pre-configured �me-
stamp services instead of requiring the signature applica�on to obtain �me-stamp services from a
different provider.



Input

This method allows the following parameters:
Parameter Presence Value Descrip�on

hash REQUIRED String The Base64-encoded hash value to be �me stamped. The remote service SHALL use this
value to encode the value of MessageImprint.hashedMessage as defined in RFC 3161 [2].

hashAlgo REQUIRED String The OID of the algorithm used to calculate the hash value. The remote service SHALL use
this value to encode the value of MessageImprint.hashAlgorithm as defined in RFC 3161
[2].

nonce OPTIONAL String A large random number with a high probability that it is generated by the signature
applica�on only once. The value SHALL be represented as hex-encoded string.

clientData OPTIONAL String The clientData as defined in the Input parameter table in oauth2/authorize.

Note 34: RFC 3161 [2] contains more detailed defini�ons of �me stamp parameters that can be used
in the context of this specifica�on.

Output

This method returns the following values using the “applica�on/json” format:
Parameter Presence Value Descrip�on

�mestamp REQUIRED String The Base64-encoded �me-stamp token as defined in RFC 3161 [2] as updated by RFC 5816
[10]. If the nonce parameter is included in the request then it SHALL also be included in
the �me-stamp token, otherwise the response SHALL be rejected.

Error Case Status
Code

Error Error Descrip�on

The authoriza�on header does not match the pa�ern
“Bearer [sessionKey]”

400 
(bad
request) 

invalid_request Malformed authoriza�on
header.

The“hash” parameter is missing or not of type String. 400 
(bad
request) 

invalid_request Missing (or invalid type) string
parameter hash

Empty hash parameter 400 
(bad
request) 

invalid_request Empty hash parameter

Invalid “hash” length 400 
(bad
request) 

invalid_request Invalid digest value length

Invalid Base64 hash element 400 
(bad
request) 

invalid_request Invalid Base64 hash string
parameter

Invalid “hashAlgo” parameter 400 
(bad
request) 

invalid_request Invalid parameter hashAlgo

Invalid or non-numeric “nonce” parameter 400 
(bad
request) 

invalid_request Invalid parameter nonce

Sample Request

POST /csc/v2/signatures/timestamp HTTP/1.1 
Host: service.domain.org 



Content-Type: application/json 
Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA 
 
{ 
   "hash":"sTOgwOm+474gFj0q0x1iSNspKqbcse4IeiqlDg/HWuI=", 
   "hashAlgo":"2.16.840.1.101.3.4.2.1", 
   "clientData":"12345678" 
}

cURL example

curl -X POST 
     -H "Content-Type: application/json" 
     -H "Authorization: Bearer 4/CKN69L8gdSYp5_pwH3XlFQZ3ndFhkXf9P2_TiHRG-bA" 
     -d '{ "hash": "sTOgwOm+474gFj0q0x1iSNspKqbcse4IeiqlDg/HWuI=", 
           "hashAlgo": "2.16.840.1.101.3.4.2.1", 
           "clientData": "12345678" }' 
     https://service.domain.org/csc/v2/signatures/timestamp

Sample Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8 
 
{ 
   
"timestamp":"MGwCAQEGCSsGAQQB7U8CATAxMA0GCWCGSAFlAwQCAQUABCCrCqnrjH0VxXyQQlfnFJRx1jjrviTs
7/GjKghr2AmluQIIVs5D8OUB4p4YDzIwMTQxMTE5MTEzMjM5WjADAgEBAgkAnWn2SSIWlXk=" 
}

12 JSON schema and OpenAPI descrip�on
A signature applica�on may want to validate the JSON objects described in this specifica�on, to
ensure that required proper�es are present and that addi�onal constraints are met. Valida�on of
JSON data is typically performed by means of a specific JSON Schema.

A JSON Schema is a grammar language for defining the structure, content, and seman�cs of JSON
data objects. It can specify metadata about the meaning of an object’s proper�es and values that are
valid for those proper�es. The JSON Schema is defined at h�ps://json-schema.org.

The JSON schema of the API specifica�on described in this specifica�on is available from the website
of the Cloud Signature Consor�um at: 
h�ps://cloudsignatureconsor�um.org/resources/download-api-specifica�ons/.

The JSON Schema file contains the defini�on of all CSC API parameters and the defini�on of the
input and output objects managed by the CSC API. The following objects are defined:

input-info: input object for info method

output-info: output object for info method

input-auth-login: input object for auth/login method

output-auth-login: output object for auth/login method

input-auth-revoke: input object for auth/revoke method

https://json-schema.org/
https://cloudsignatureconsortium.org/resources/download-api-specifications/


input-creden�als-list: input object for creden�als/list method

output-creden�als-list: output object for creden�als/list method

input-creden�als-info: input object for creden�als/info method

output-creden�als-info: output object for creden�als/info method

input-creden�als-authorize: input object for creden�als/authorize method

output-creden�als-authorize: output object for creden�als/authorize method

input-creden�als-extendTransac�on: input object for creden�als/extendTransac�on method

output-creden�als-extendTransac�on: output object for creden�als/extendTransac�on
method

input-creden�als-sendOTP: input object for creden�als/sendOTP method

input-signatures-signhash: input object for signatures/signhash method

output-signatures-signhash: output object for signatures/signhash method

input-signatures-�mestamp: input object for signatures/�mestamp method

output-signatures-�mestamp: output object for signatures/�mestamp method

In addi�on, an OpenAPI 3.0 descrip�on file is provided, as defined by the OpenAPI Ini�a�ve (OAI)
h�ps://www.openapis.org, containing these JSON Schema defini�ons together with other
informa�on to fully describe the CSC API protocol. The OpenAPI file contains:

1. A general informa�on about the protocol like, for example, the APIs version, the Cloud
Signature Consor�um contact informa�on and the license;

2. Informa�on about the RESTful path URL and an example of server URL access points;

3. Authoriza�on schemas required to access the CSC API;

4. A descrip�on of every method of the CSC protocol including input objects and returned HTTP
responses.

The OpenAPI descrip�on file can also be used by developers or testers to automa�cally generate a
CSC compliant server interfaces or client stubs.

13 Interac�on among elements and components
The building blocks of a remote signature solu�on interact with the API methods described in this
specifica�on. The following sec�ons describe the sequence diagrams of some of the most common
opera�ons required to obtain a service authoriza�on, creden�al authoriza�on and to request a
remote signature.

Note 35: The sample requests and responses that are provided in the diagrams are only a par�al
representa�on of complete transac�ons and are aimed at showing the most important

https://www.openapis.org/


parameters and informa�on. See the example in the previous sec�ons of this specifica�on for
complete and detailed descrip�ons.

13.1 Remote signing service authoriza�on using Basic
Authen�ca�on

13.2 Remote signing service authoriza�on using OAuth2 with
Authoriza�on Code flow



13.3 Create a remote signature with a creden�al protected by a
PIN

13.4 Create a remote signature with a creden�al protected by an
“online” OTP (based on SMS)



13.5 Create a remote signature with a creden�al protected by a
mobile app



13.6 Create a remote signature with a creden�al protected by a
PIN and an “online” OTP (based on SMS)

13.7 Create a remote signature with a creden�al protected by
OAuth2 with Authoriza�on Code flow



13.8 Create a remote signature with creden�al and signature
qualifier with OAuth2 Authoriza�on Code flow

13.9 Create a remote signature with OAuth2 Authoriza�on Code
flow and Pushed and Rich Authoriza�on Request

13.10 Create a remote signature with a creden�al protected by
RSSP-managed authoriza�on



13.11 Create mul�ple remote signatures from a list of hash values

13.12 Create a remote mul�-signatures transac�on with a PDF
document

This diagram shows the case of a PDF document that is signed mul�ple �mes by the same signer. A
single creden�al authoriza�on can be performed to authorize mul�ple signatures. However only the
ini�al hash of the document is available at authoriza�on �me. A new hash will be generated to
calculate the following signatures. For this reason, the creden�als/extendTransac�on method is
used to supply the new hash to obtain the SAD to calculate a new signature. See
creden�als/extendTransac�on for more informa�on.



14 Change history

14.1 Changes since version 1.0.4.0

Add cer�ficate info into creden�als/list method: It is now allowed to provide directly in the
creden�als/list method the detailed informa�on of the cer�ficates.

Add asymmetric signing: The possibility was added to use asynchronous call as was already
proposed in ETSI TS 119 432.

Add signing of documents: It is not only possible to create a cryptographic signature of a hash,
but also to create an AdES signature on a hash or a document. The func�onality is more
powerful than the one introduced in ETSI TS 119 432 since it allows different signature formats
for different documents within one call, which is especially useful in case a cer�ficate is only
created for one signature authoriza�on, and this authoriza�on should cover different types of
documents. It also allows to request JAdES signatures.

Possibility to use authoriza�on request payload (PAR) and rich authoriza�on requests (RAR) in
the OAuth authoriza�on.



Allow to use only the creden�al OAuth authoriza�on (without service authoriza�on) for
signing.

Add a chapter on the usage of the CSC protocol for crea�ng electronic seals.

When crea�ng a PAdES signature based on the hash document, provide the revoca�on
informa�on so that this can be included in the final signed document.

Allow to request only creden�al which are valid, i.e. which can be used to sign, in the
creden�als/list endpoint

Add explana�on how to define algorithms via OIDs.

Allow to request signature authoriza�on via OAuth on a creden�al of a specific type, without
specifying the creden�al ID. This is useful for short lived creden�als which are only created for
a specific signature process.

Make explicit creden�al authoriza�on more flexible: The explicit creden�al authoriza�on
allows to use and combine different authoriza�on types. This makes the implicit creden�al
authoriza�on useless, because it can be expressed as part of the explicit creden�al
authoriza�on.

Each �me hash values are provided, provide also the hash algorithm


