
Data model for remote

signature applications

version 1.0.0

f

1



Contents

Foreword

Revision history

Acknowledgements

Introduction

Intellectual Property Rights

Trademark notice

Essential Patents

Legal notices

1 Scope

2 Interpretation of requirement levels

3 References

3.1 Normative references

3.2 Informative references

4 Terms, definitions and abbreviations

4.1 Terms and definitions

4.2 Abbreviations

4.3 JSON data types

5 Conventions

5.1 Text conventions

5.2 Base64

6 Architectures and use cases

7 Basic data types

7.1 adesParameters

7.2 attribute

7.3 certificatePolicy

7.4 hash

7.5 signatureQualifier

7.6 signingAlgorithm

7.7 subjectData

8 Documents

8.1 documentData

8.2 documentInfo

8.3 documentReference

8.3.1 accessControlMethod

8.4 documentRepresentations

9 Requests

9.1 credentialCreationRequest

9.2 credentialDeletionRequest

9.3 signatureCreationRequest

9.4 signatureRequest

10 Authorization

10.1 signatureCreationApproval

Foreword

This document is a work by members of the Cloud Signature Consortium, a nonprofit association founded by

industry and academic organizations for building upon existing knowledge of solutions, architectures and

protocols for Cloud-based Digital Signatures, also defined as “remote” Electronic Signatures.

f

2



The Cloud Signature Consortium has developed the present specification to make these solutions interoperable

and suitable for uniform adoption in the global market, in particular – but not exclusively – to meet the

requirements of:

the European Union's Regulation 910/2014 on Electronic Identification and Trust Services (eIDAS) [i.1],

which formally took effect on 1 July 2016, amended by Regulation 2024/1183 on the European Digital

Identity Framework [i.2].

Revision history

Version Date Version change details

0.1.0 15/03/2025 Pre-release for early feedback

0.2.0 28/03/2025 Pre-release, refined, for public feedback

0.3.0 27/06/2025 Pre-release for early expert feedback on specific changes

0.4.0 18/07/2025 Pre-release for more expert feedback on specific changes

0.5.0 01/08/2025 Pre-release for public feedback

1.0.0 16/10/2025 Public release

Acknowledgements

This work is the result of the contributions of several individuals from the Technical Working Group of the Cloud

Signature Consortium and some additional contributors.

Introduction

This specification defines data models for use in standard APIs such as those within the OAuth 2.0 [4]

(henceforth: OAuth) and OpenID for Verifiable Credentials [i.6] (henceforth: OID4VC) frameworks, in a way that

complements the Cloud Signature Consortium APIs.

Intellectual Property Rights

The Intellectual Property Rights Policy (IPR Policy) of the Cloud Signature Consortium is available at

https://cloudsignatureconsortium.org/about-us/intellectual-property/.

Trademark notice

The Cloud Signature Consortium logo is a Registered Trademark of the Cloud Signature Consortium:

EU Trademark number 015579048.

Essential Patents

IPRs essential or potentially essential to the present document may have been declared to the Cloud Signature

Consortium. The information pertaining to these essential IPRs, if any, is available on request from the Cloud

Signature Consortium secretariat at info@cloudsignatureconsortium.org.

No investigation, including IPR searches, has been carried out by the Cloud Signature Consortium. No guarantee

can be given as to the existence of other IPRs not referenced in the present document which are, or may be, or

may become, essential to the present document.

f

3

https://cloudsignatureconsortium.org/about-us/intellectual-property/
mailto:info@cloudsignatureconsortium.org


Legal notices

The Cloud Signature Consortium seeks to promote and encourage broad and open industry adoption of its

standard.

  

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA

4.0). To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

The present document does not create legal rights and does not imply that intellectual property rights are

transferred to the recipient or other third parties. The adoption of the specification contained herein does not

constitute any rights of affiliation or membership to the Cloud Signature Consortium VZW.

This document is provided “as is” and the Cloud Signature Consortium, its members and the individual

contributors, are not responsible for any errors or omissions.

The Trademark and Logo of the Cloud Signature Consortium are registered, and their use is reserved to the

members of the Cloud Signature Consortium VZW. Questions and comments on this document can be sent to

info@cloudsignatureconsortium.org.

1 Scope

These data models target several use cases in which the creation of electronic signatures is distributed across

multiple distributed applications. These applications include business applications, (mobile) identity wallets, and

trust service applications.

This specification defines data models for:

Requesting a signature

Requesting a signing operation

Authorization of a signing operation

The following are out of scope or this specification:

Application programming interfaces (APIs).

2 Interpretation of requirement levels

The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,

“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in RFC 2119 [1].

f

4

http://creativecommons.org/licenses/by-sa/4.0/
mailto:info@cloudsignatureconsortium.org


3 References

3.1 Normative references

The following documents, in whole or in part, are normatively referenced in this specification and are

indispensable for its application. For dated references, only the edition cited applies. For undated references

(regardless if a specific version is linked or not), the latest edition of the referenced document (including any

amendments or errata) applies.

[1] IETF RFC 2119: “Key words for use in RFCs to Indicate Requirement Levels”.

[2] IETF RFC 4648: “The Base16, Base32, and Base64 Data Encodings”.

[3] IETF RFC 2397: “The ‘data’ URL scheme”.

[4] IETF RFC 6749: “The OAuth 2.0 Authorization Framework”.

[5] IETF RFC 7515: “JSON Web Signature (JWS)”.

[6] IETF RFC 8259: “The JavaScript Object Notation (JSON) Data Interchange Format”.

[7] IETF RFC 9112: “HTTP/1.1”.

[8] ETSI EN 319 122-1 “Electronic Signatures and Infrastructures (ESI); CAdES digital signatures;

Part 1: Building blocks and CAdES baseline signatures”.

[9] ETSI EN 319 132-1: “Electronic Signatures and Infrastructures (ESI); XAdES digital signatures;

Part 1: Building blocks and XAdES baseline signatures”.

[10] ETSI EN 319 142-1: “Electronic Signatures and Infrastructures (ESI); PAdES digital signatures;

Part 1: Building blocks and PAdES baseline signatures”.

[11] ETSI TS 119 182-1: “Electronic Signatures and Infrastructures (ESI); JAdES digital signatures;

Part 1: Building blocks and JAdES baseline signatures”.

[12] IETF RFC 8017: “PKCS #1: RSA Cryptography Specifications Version 2.2”.

[13] ISO 3166-1: “Codes for the representation of names of countries and their subdivisions —

Part 1: Country codes”. A list of country codes can be accessed on ISO Online Browsing Platform

(OBP).

[14] IETF RFC 8610: “Concise Data Definition Language (CDDL): A Notational Convention to Express

Concise Binary Object Representation (CBOR) and JSON Data Structures”.

f

5

https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc4648
https://www.rfc-editor.org/rfc/rfc2397
https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc7515
https://www.rfc-editor.org/rfc/rfc8259
https://www.rfc-editor.org/rfc/rfc9112
https://www.etsi.org/deliver/etsi_en/319100_319199/31912201/01.03.01_60/en_31912201v010301p.pdf
https://www.etsi.org/deliver/etsi_en/319100_319199/31912201/01.03.01_60/en_31912201v010301p.pdf
https://www.etsi.org/deliver/etsi_en/319100_319199/31913201/01.03.01_60/en_31913201v010301p.pdf
https://www.etsi.org/deliver/etsi_en/319100_319199/31913201/01.03.01_60/en_31913201v010301p.pdf
https://www.etsi.org/deliver/etsi_en/319100_319199/31914201/01.02.01_60/en_31914201v010201p.pdf
https://www.etsi.org/deliver/etsi_en/319100_319199/31914201/01.02.01_60/en_31914201v010201p.pdf
https://www.etsi.org/deliver/etsi_ts/119100_119199/11918201/01.02.01_60/ts_11918201v010201p.pdf
https://www.etsi.org/deliver/etsi_ts/119100_119199/11918201/01.02.01_60/ts_11918201v010201p.pdf
https://www.rfc-editor.org/rfc/rfc8017
https://www.iso.org/standard/72482.html
https://www.iso.org/standard/72482.html
https://www.iso.org/obp/ui/#search/code/
https://www.iso.org/obp/ui/#search/code/
https://www.rfc-editor.org/rfc/rfc8610
https://www.rfc-editor.org/rfc/rfc8610


[15] ETSI EN 319 102-1 “Electronic Signatures and Trust Infrastructures (ESI); Procedures for

Creation and Validation of AdES Digital Signatures; Part 1: Creation and Validation”.

[16] IETF RFC 5280: Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation

List (CRL) Profile.

3.2 Informative references

The following documents, in whole or in part, are informatively referenced in this specification and may be a

useful contribution for its application. For dated references, only the edition cited applies. For undated

references (regardless if a specific version is linked or not), the latest edition of the referenced document

(including any amendments or errata) applies.

[i.1] Regulation (EU) No 910/2014 of the European Parliament and of the Council of 23 July 2014

on electronic identification and trust services for electronic transactions in the internal market and

repealing Directive 1999/93/EC.

[i.2] Regulation (EU) 2024/1183 of the European Parliament and of the Council of 11 April 2024

amending Regulation (EU) No 910/2014 as regards establishing the European Digital Identity

Framework.

[i.3] CSC Architectures and protocols for remote signature applications.

[i.4] IETF RFC 9396: “OAuth 2.0 Rich Authorization Requests”.

[i.5] OpenID for Verifiable Presentations, Version 1.0.

[i.6] OpenID for Verifiable Credentials.

[i.7] IETF RFC 3739: “Qualified Certificates Profile”.

[i.8] void

[i.9] ETSI TS 119 001: “Electronic Signatures and Infrastructures (ESI); The framework for

standardization of signatures; Definitions and abbreviations”.

[i.10] IETF RFC 5280: “Internet X.509 Public Key Infrastructure Certificate and Certificate

Revocation List (CRL) Profile”.

[i.11] ISO/IEC 18013-5: “Personal identification — ISO-compliant driving licence — Part 5: Mobile

driving licence (mDL) application”.

[i.12] draft-ietf-oauth-sd-jwt-vc-08: “SD-JWT-based Verifiable Credentials (SD-JWT VC)”.

f

6

https://www.etsi.org/deliver/etsi_en/319100_319199/31910201/01.04.01_60/en_31910201v010401p.pdf
https://www.etsi.org/deliver/etsi_en/319100_319199/31910201/01.04.01_60/en_31910201v010401p.pdf
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5280
https://eur-lex.europa.eu/eli/reg/2014/910/2024-10-18
https://eur-lex.europa.eu/eli/reg/2024/1183/oj
https://cloudsignatureconsortium.org/resources/download-api-specifications/
https://www.rfc-editor.org/rfc/rfc9396
https://openid.net/specs/openid-4-verifiable-presentations-1_0.html
https://openid.net/sg/openid4vc/specifications/
https://www.rfc-editor.org/rfc/rfc3739
https://www.etsi.org/deliver/etsi_tr/119000_119099/119001/01.02.01_60/tr_119001v010201p.pdf
https://www.etsi.org/deliver/etsi_tr/119000_119099/119001/01.02.01_60/tr_119001v010201p.pdf
https://www.rfc-editor.org/rfc/rfc5280
https://www.rfc-editor.org/rfc/rfc5280
https://www.iso.org/standard/69084.html
https://www.iso.org/standard/69084.html
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-sd-jwt-vc-08


Note 1: The reference [i.12] will be updated with a final version before official publication.

[i.13] ETSI TS 119 312: “Electronic Signatures and Infrastructures (ESI); Cryptographic Suites”.

[i.14] W3C Digital Credentials, Working Draft 10 July 2025.

[i.15] South African Electronic Communications and Transactions Act.

[i.16] OpenID Connect Core 1.0.

4 Terms, definitions and abbreviations

4.1 Terms and definitions

For the purposes of this specification, the following terms and definitions apply.

authorization server: server enabling users to authorize privileged operations.

Note 2: The authorization server is usually the endpoint described in CSC API [i.3] Section 8.4.

base64: Base64 as defined by RFC 4648 [2] Section 4, i.e. standard alphabet with padding SHALL be used. See

also paragraph about Base64 in Conventions section of this document.

base64url: Denotes the URL-safe Base64 encoding as defined in RFC 4648 [2] Section 5 and further precised in

RFC 7515 [5] Section 2 and Appendix C. Padding SHALL NOT be used.

digital signature: data appended to, or a cryptographic transformation of a data unit that allows a recipient of

the data unit to prove the source and integrity of the data unit and protect against forgery e.g. by the recipient

[i.9]

driving application: component that uses a signature creation application to sign a document as identified by

interacting with the relying party and/or signer.

electronic signature: digital signature created by using a certificate issued to a natural person ensuring the

integrity and origin of the document and the signatory commitment to the document content.

electronic seal: digital signature created by using a certificate issued to a legal person or business unit ensuring

the integrity and origin of the document, without necessarily committing to the content.

identity wallet: electronic means for identification or presentation of electronic attestations of attributes, for

example at an authorization server.

relying party: a party relying on a signature from the signer.

Note 3: Typically, one relying party requests the signature. The signer could be a relying party.

remote signing service provider: service provider managing a set of credentials on behalf of multiple users and

allowing them to create a remote signature with a stored credential.

signature: shorthand for electronic signature or electronic seal.

f

7

https://www.etsi.org/deliver/etsi_TS/119300_119399/119312/01.05.01_60/ts_119312v010501p.pdf
https://www.w3.org/TR/2025/WD-digital-credentials-20250710/
https://www.gov.za/documents/electronic-communications-and-transactions-act
https://openid.net/specs/openid-connect-core-1_0.html


signature creation application: application that accepts signer’s original document and produces a signature or

signed document in accordance with AdES [15].

signer’s document representation: hash value of signer’s formatted document. As defined in [15].

signer’s original document: some document types (e.g. PDF, XML, and JSON) require formatting before SDR can

be computed. signer’s original document is the original document before any formatting.

signer’s formatted document: some document types (e.g. PDF, XML, and JSON) require formatting before SDR

can be computed. signer’s original document is the original document after any formatting. SDR is the hash of

signer’s formatted document.

URL-encoded: encoded using the application/x-www-form-urlencoded format as defined in RFC 6749 [4]

Appendix B.

4.2 Abbreviations

This section lists abbreviations used in this specification.

Authz: authorization server

DA: driving application

eIDAS: Regulation (EU) No 910/2014 [i.1] with ammendments of Regulation (EU) 2024/1183 [i.2]

OID4VC OpenID for Verifiable Credentials, see [i.6].

OpenID4VP OpenID for Verifiable Presentations, see [i.5].

RP: relying party

RSSP: remote signing service provider

SCA: signature creation application

SCD: signature creation device

SDR: signer’s document representation

ECTA: South African Electronic Communications and Transactions Act [i.15]

4.3 JSON data types

The data model uses the following data types from JSON [6], unless otherwise specified.

Object: a JSON object

Array: a homogeneous JSON array

String: a JSON string

Integer: a non-negative JSON number

Boolean: a JSON boolean

5 Conventions

5.1 Text conventions

This specification adopts the following text conventions to help identify various types of information.

f

8



Table 1 – Text conventions

Text convention Example

The vertical bar ( | ) indicates a possible value for selection or outcome and

SHALL be interpreted as “exclusive or”.

YES | NO

Text in colored boxes is example code.

POST /csc/v2/credentials/info

HTTP/1.1

Italic text indicates the name of a data component or data type. A documentInfo object contains a String parameter

named hash.

… the meta parameter in the credential query.

Inline code blocks are used for other code than names of a data component or

data type.

The String value "public" or "OTP" can be used.

… a remotely hosted document or a data: URL …

… by calling the signatures/signHash endpoint …

In general, data types and data components defined in this specification use the “camelCase” notation, like the

data type documentInfo or the data component (parameter) authType. In case the name contains an

abbreviation, this abbreviation is written with uniform casing, like hashAlgorithmOID (“OID” in uppercase,

because it is not the first word) and qesRequest (“qes” in lowercase, because it is the first word).

However, names and parameters that are defined in other standards, like those in the domain of authentication

and related to OAuth, are used here in their original format to facilitate understanding and interoperability, using

“snake_case”, like refresh_token, i.e., two names separated by an underscore. This specification is self-contained

and in general does not refer to any external data types other than JSON data types. When this specification

refers to external data types, that reference is specified in the respective section. Therefore, no general

conventions are defined for external data types.

Whenever a data type is specified as an Object with particular parameters or attributes, instances with this type

can be referred to as “object” in lowercase. For example, a documentInfo object is an Object that conforms to the

requirements specified in the documentInfo section.

5.2 Base64

Where possible, and not contradicted by other conventions such as code examples, we follow the recommended

typesetting for references to the different Base64 variants as defined in RFC 4648 [2]. As a result, the (lowercase)

usage of ‘base64’ or ‘base64url’ strictly follows the specifications provided in Terms and definitions.

For data defined by this specification, when it is required to be Base64 encoded, data SHALL be encoded and

decoded as defined in RFC 4648 [2] Section 4, which defines the usage of the standard alphabet and the use of

padding. To avoid JSON representation issues line breaks SHALL NOT be used within base64-encoded data.

Within this document, it is stated different (e.g. by referencing “base64url-encoding”) on a specific parameter

only where a relying standard other normative already defined it different.

Example: For an external container which is defined in another normative, where CSC data elements are

embedded, base64url may apply for the encoding of the external container. Contained data elements defined by

this document use base64 encoding. Other data elements which originate from other normative may be

base64url-encoded.

Service implementations MAY additionally accept, based on auto-detection and for improved compatibility with

non-compliant client applications, the base64url-encoding (with and without padding) where specification

requires base64. Relying Party implementations MAY additionally accept, based on auto-detection and for

improved compatibility with non-compliant service implementations, the base64url-encoding (with and without

padding) where base64 is requested according to the specification.

f

9



6 Architectures and use cases

The present document is complementary to the CSC API [i.3]. The CSC API specifies interfaces for cloud services

that provide signing of documents, signing of document digests, and management of credentials (keys with

certificates). The CSC API supports a wide range of architectures.

The purpose of this document is to define a set of data structures for signature and signature creation requests,

signing authorization, and signing responses as well as associated data for use in invocation of the CSC API, while

having these data structures also usable in interactions between components surrounding the CSC APIs in more

complex architectures. In particular, the data structures in this document could be used for:

Interactions between an API client and the CSC API.

Authorization details in an OAuth authorization flow before invoking the CSC API for performing the

actual signing operation.

Interactions between an authorization server and the signer.

A relying party requesting a signature from the signer.

An important motivation for this document is the amendment [i.2] to the Regulation (EU) No 910/2014 of the

European Parliament and of the Council of 23 July 2014 on electronic identification and trust services for

electronic transactions in the internal market [i.1] (“eIDAS”). This regulation lays down rules for qualified

signatures and the European Digital Identity Wallet. In the terminology of eIDAS, the CSC API provides interfaces

for remote “signature creation applications” (signatures/signDoc) and remote “signature creation devices”

(signatures/signHash).

In a signing flow a replying party (RP) requests a signer to sign a document. In some cases, the RP may be the

signer.

The signer interacts with a driving application (DA) when signing. The DA could, for instance, be:

A service provided by the relying party (RP),

Provided by a separate service provider (e.g. a signing portal) that both the signer and RP interacts with,

or

An application running on the signers device (e.g. an identity wallet).

The DA sends a signature creation request to a signature creation application (SCA), expecting either a signed

document or a signature object. The SCA handles signature formatting according to e.g. AdES (see [8], [9], [10],

and [11]). The SCA could, for instance, be:

Part of the DA, or

Part of the signer’s mobile identity wallet, or

Provided as a remote (proxy) signing service implementing the CSC signatures/signDoc interface.

Signature creation is performed by a signature creation device (SCD). For remote signing the SCD is hosted by a

remote signing service provider (RSSP). The SCA interacts with SCD to create the signature value. The RSSP may

support either:

only the signatures/signHash endpoint,

the signatures/signDoc endpoint with access to a “signature creation device” used to sign the document,

or

the signatures/signDoc endpoint, implemented by calling the signatures/signHash endpoint from a

different service provider.

When the RSSP implements the signatures/signDoc endpoint it is effectively a SCA. In that case, the DA may use

the RSSP directly, or it may use a secondary SCA as proxy for the SCA implemented by the RSSP.

The data model described in the present document supports the interactions described above.

f

10



In some deployments, some of the interactions may be internal (e.g. to a single service provider, or a service

providers with a pre-existing agreement). Where interoperability is not required, the interactions may not be as

described in this section. Such interactions are out of scope of this document.

In some instances, the RSSP will implement the full CSC API. This enables a DA to use a remote SCA provided by

an RSSP.

RSSP

Signature
Creation

Device (SCD)

Authorization
Server

Signature
Creation

Application (SCA)

Driving
Application (DA)

Relying Party

Signature
Creation

Device (SCD)

Authorization
Server

Signature
Creation

Application (SCA)

Driving
Application (DA)

Relying Party

Signature request (what and how)

Credential authorization details

CSC API: Credential creation request

Credential info

Signature creation request
CSC API: POST signatures/signDoc

CSC API: POST signatures/signHash

Signature value

Signature/Signed document

Signature/Signed document

RSSP with remote SCA

In other instances, the RSSP may only implement the sighHash functionality. In this case, a SCA can use a remote

SCD provided by an RSSP.

RSSP

Signature
Creation

Device (SCD)

Authorization
Server

Signature
Creation

Application (SCA)

Driving
Application (DA)

Relying Party

Signature
Creation

Device (SCD)

Authorization
Server

Signature
Creation

Application (SCA)

Driving
Application (DA)

Relying Party

Signature request (what and how)

Signature creation request

Credential authorization details

CSC API: Credential creation request

Credential info

CSC API: POST signatures/signHash

Signature value

Signature/Signed document

Signature/Signed document

RSSP with remote SCD

The protocol for requesting a signature from a component in the environment of the signer (such as an identity

wallet) is out of scope for the CSC, although one suitable protocol could be the CSC API [i.3] with its

signatures/signDoc endpoint. For other protocols, this document provides data structures that can be used to

convey the information required to request a signature.

f

11



7 Basic data types

This section specifies basic data components that are applied in remote signing-related processes specified in the

CSC API [i.3]. How these data components are applied, is specified in separate API or data formatting

specifications.

7.1 adesParameters

The adesParameters object expresses the AdES format of a signature.

The adesParameters object is composed of the following parameters.

f

12



Parameter Presence Value Description

signature_format OPTIONAL String The required signature format:

“C” SHALL be used to request the creation of a CAdES

signature;

“X” SHALL be used to request the creation of a XAdES

signature.

“P” SHALL be used to request the creation of a PAdES

signature.

“J” SHALL be used to request the creation of a JAdES

signature.

conformance_level OPTIONAL String The required signature conformance level:

“AdES-B-B” SHALL be used to request the creation of a

baseline 191x2 level B signature;

“AdES-B-T” SHALL be used to request the creation of a

baseline 191x2 level T signature;

“AdES-B-LT” SHALL be used to request the creation of a

baseline 191x2 level LT signature;

“AdES-B-LTA” SHALL be used to request the creation of a

baseline 191x2 level LTA signature;

“AdES-B” SHALL be used to request the creation of a

baseline etsits level B signature;

“AdES-T” SHALL be used to request the creation of a

baseline etsits level T signature;

“AdES-LT” SHALL be used to request the creation of a

baseline etsits level LT signature;

“AdES-LTA” SHALL be used to request the creation of a

baseline etsits level LTA signature.

If a timestamp is needed its request and inclusion is managed by

the signing server according to signing server configuration and

policies.

signed_envelope_property OPTIONAL String The required property concerning the signed envelope whose

possible values depend on the value of the signature_format

parameter.

According to the type of selected signature_format a client

application may specify the following signature properties.

CAdES

Detached

Attached

Parallel

PAdES

Certification

Revision

XAdES

Enveloped

Enveloping

Detached

JAdES

Detached

Attached

Parallel

The default values are the following ones.

CAdES: Attached

PAdES: Certification

XAdES: Enveloped

JAdES: Attached

signed_props OPTIONAL Array of attribute List of signed attributes other than SDR. The attributes that may be

included depend on the signature format and the signature

creation policy. Other attributes with non-colliding identifiers MAY

be included.

referenceUri OPTIONAL String If “signature_format” is “X” and “signed_envelope_property” is set

to “DETACHED”:

f

13



Parameter Presence Value Description

If present, referenceUri MUST be used as the “URI”

attribute of the corresponding signature reference.

If present, referenceUri MUST be a valid URI.

If not present, the “URI” attribute of the corresponding

reference MUST be omitted.

If “signature_format” is “J” and “signed_envelope_property” is set

to “DETACHED”:

If present, referenceUri MUST be used in the “sigD” header

parameter.

If present, referenceUri MUST be a valid URI.

If not present, the “sigD” header parameter MUST be

omitted.

Otherwise:

This parameter MUST be ignored.

Note 4: The referenceUri will be part of the signature and should only be resolved during signature validation.

The referenceUri may not always resolve to the document to be signed during the signing operation.

7.2 attribute

The attribute object is composed of the following parameters:

Parameter Presence Value Description

attribute_name REQUIRED String Attributes and/or properties listed in the tables in clauses 6.3 of

ETSI EN 319 122-1 [8], ETSI EN 319 132-1 [9], ETSI EN 319 142-1

[10], and ETSI TS 119 182-1 [11], respectively, MAY be supported by

the RSSP. The RSSP MAY define additional attributes. The RSSP

SHOULD list supported and required attributes/properties in a

signature creation policy.

attribute_value OPTIONAL String When some element of this parameter is not defined the signing

server SHALL calculate it, if needed.

7.3 certificatePolicy

Parameter Presence Value Description

certificatePolicy REQUIRED

Conditional

String String containing the OID identifying the applicable certificate

policy for the new signing certificate.

7.4 hash

The hash object represents the hash digest of data and information about the hashing algorithm used.

The hash object is composed of the following parameters.

Parameter Presence Value Description

value REQUIRED String Hash digest value with base64 encoding.

algorithmOID REQUIRED String OID of the hashing algorithm used to generate the hash value

(e.g. “2.16.840.1.101.3.4.2.1” for SHA-256).

f

14



7.5 signatureQualifier

The signatureQualifier type is a String identifying the kind of signature.

The table below lists a set of pre-defined values for the signatureQualifier type.

Note 5: Service providers may define and use their own identifiers.

Identifier Description

"eu_eidas_qes" This identifier refers to a qualified electronic signature under eIDAS.

"eu_eidas_aes" This identifier refers to an advanced electronic signature under eIDAS.

"eu_eidas_aesqc" This identifier refers to an advanced electronic signature with qualified certificate under eIDAS.

"eu_eidas_qeseal" This identifier refers to a qualified electronic seal under eIDAS.

"eu_eidas_aeseal" This identifier refers to an advanced electronic seal under eIDAS.

"eu_eidas_aesealqc" This identifier refers to an advanced electronic seal with qualified certificate under eIDAS.

"za_ecta_aes" This identifier refers to an advanced electronic signature defined by the South African ECT Act [i.15].

"za_ecta_oes" This identifier refers to an ordinary electronic signature defined by the South African ECT Act [i.15].

Note 6: Signature qualifiers follow the syntax X_Y_Z (e.g. eu_eidas_qes) where: X: The ISO 3166-1 [13] Alpha-2

code of the country where the signature legislation is defined (e.g. eu for Europe). Y: The shortform name

of the legislation (e.g. eidas for Electronic Identification And Trust Services). Z: The shortform name of the

signature type defined by the legislation (e.g. qes for Qualified Electronic Signatures).

7.6 signingAlgorithm

The signingAlgorithm object represents the cryptographic algorithm use for a signing operation.

The signingAlgorithm object is composed of the following parameters.

Parameter Presence Value Description

signAlgo REQUIRED String The OID of the algorithm to use for signing. For example:

1.2.840.113549.1.1.1 = RSA encryption, 1.2.840.10045.4.3.2 =

ECDSA with SHA-256. Typically, it will be one of the values

contained in the list of supported key algorithms in CSC API [i.3]

methods credentials/info or credentials/list

signAlgoParams REQUIRED

Conditional

String The base64-encoded DER-encoded ASN.1 signature parameters, if

required by the signature algorithm. Some algorithms like RSASSA-

PSS, as defined in RFC 8017 [12], may require additional

parameters.

7.7 subjectData

The subjectData object is a JSON object with information about a natural or legal person. The subjectData

SHOULD contain data intended for inclusion in the certificate.

The subjectData object SHOULD include “Standard Claims” from OIDC[i.16], where applicable. Profiles of this

data type MAY add additional properties.

Example:

f

15



8 Documents

This section specifies document-related data components that are applied in remote signing-related processes

specified in the CSC API [i.3]. How these data components are applied, is specified in separate API or data

formatting specifications.

8.1 documentData

The documentData object contains a full document to be signed. The document can either be a “Signer’s original

document” or a “Signer’s formatted document”.

The documentData object is composed of the following parameters.

Parameter Presence Value Description

label OPTIONAL String String containing a human-readable description of the respective

document.

document REQUIRED String base64-encoded document content to be signed.

In case hashes were provided for the credential authorization, then

the RSSP SHALL verify that the hash of the document in this

parameter corresponds to one of the hashes provided in the

credential authorization.

documentType OPTIONAL String Indication of the document type. Can be either "sod" or "sfd".

Default value is "sod".

circumstantialData OPTIONAL String base64-encoded data required by the RSSP to deterministically

compute SDR from signer’s original document.

8.2 documentInfo

The documentInfo object is used to authorize documents and properties to be signed.

The documentInfo object is composed of the following parameters.

Parameter Presence Value Description

label OPTIONAL String String containing a human-readable description of the respective

document.

hash REQUIRED String String containing the actual base64-encoded octet-representation

of the hash of the document.

hashType OPTIONAL String Indication of the type of hash. SHALL be either "sdr", "dtbsr", or

"sodr". If absent, the hash type SHOULD be interpreted as

"dtbsr".

signed_props OPTIONAL Array of attribute List of signed attributes other than SDR. The attributes that may be

included depend on the signature format and the signature

creation policy. Other attributes with non-colliding identifiers MAY

be included.

circumstantialData OPTIONAL String base64-encoded data required by the RSSP to deterministically

compute SDR from signer’s original document.

{
    "name": "John Doe",

    "family_name": "Doe",
    "given_name": "John",

    "address": {
        "country": "DK"

    }
}

f

16



Note 7: Future versions of this data model may add additional options for hashType and may specify a default

value. Future versions of this data model will support RSSP-defined hash types.

8.3 documentReference

The documentReference object represents a location where the document to sign can be retreived.

The documentReference object is composed of the following parameters.

Parameter Presence Value Description

label OPTIONAL String String containing a human-readable description of the respective

document.

access OPTIONAL accessControlMethod Object defining the method for access control to the resource

located using href, as defined below.

href REQUIRED String The URL that locates signer’s original document. This can for

example be an https:// URL for a remotely hosted document. For

transmission of document data implementors SHOULD prefer to

use documentData over documentReference with a data URI

scheme.

checksum OPTIONAL hash Checksum protecting the integrity of signer’s original document.

SHA-256 (2.16.840.1.101.3.4.2.1) MUST be supported.

circumstantialData OPTIONAL String base64-encoded data required by the RSSP to deterministically

compute SDR from signer’s original document.

8.3.1 accessControlMethod

The accessControlMethod object is composed of at least the following parameter:

type

specified according to the following table:

Parameter Presence Value Description

type REQUIRED String String value identifying the type of the method to control access to

a remote resource. This document specifies several common access

control methods. Other access control methods MUST be identified

using a collision-resistant identifier.

8.3.1.1 Public access

Such an accessControlMethod object has type "public" and no additional parameters.

In this case, no further authorization is needed to access a remote resource. This does not preclude the option

that the resource locator is secret, and access is thereby restricted to clients who know it.

8.3.1.2 One-time password access

Note 8: This access control method has not been validated for security at the moment of writing. Just like with

other access control methods, it is up to the implementer to ensure proper design and implementation.

The OTP option is, however, included to enable implementers to rely on client’s ability to render this

information in a standard way. As with any data model for access control methods, the data model

requirements by itself do not provide any protection.

Such an accessControlMethod object has type "OTP” and the following parameter:

f

17



oneTimePassword

specified according to the following table:

Parameter Presence Value Description

oneTimePassword REQUIRED

Conditional

String The one-time password value. MUST be included only if the type is

"OTP". A one-time password value MUST be provided only once in

the context of accessing the remote resource.

The use case for the one-time password involves three roles in a cross-device scenario:

an application server, for example hosting a signer’s original document;

an authenticated client, for example a driving application front-end on a laptop;

an unauthenticated client that is not yet authenticated, but needs to obtain document data, for example

a signature creation application in an identity wallet.

In this scenario, the application server prepares a message for the client, for example a signatureRequest or a

signatureCreationRequest. The message contains a document reference, for example encoded as a

documentReference, for which the application server implements access controls. The application server can

implement one-time passwords as a protection against shoulder-surfing attacks:

1. The server provides a message reference containing a document reference to the unauthenticated client,

for example as a QR code.

2. The unauthenticated client requests the message from the server, using the message reference.

3. The server issues a one-time password and includes it in the document reference which it sends as part of

the message to the unauthenticated client.

4. The unauthenticated client displays the one-time password to the user.

5. The user enters the displayed one-time password in the authenticated client.

6. The server releases the signer’s original document to the unauthenticated client.

This way, the user of the authenticated client controls document access to unauthenticated clients obtaining the

message reference that includes the document reference. A shoulder-surfing attacker who obtains the message

reference receives a different one-time password than the original user does on their own device, so the original

user is unlikely to enter the attacker’s one-time password on the authenticated device.

8.4 documentRepresentations

The documentRepresentations object represents the digests of one or more documents to sign (i.e. SDRs).

The documentRepresentations object is composed of the following parameters.

Parameter Presence Value Description

label OPTIONAL String String containing a human-readable description of the respective

document.

hashes REQUIRED Array of String One or more hash values representing one or more SDRs. This

parameter SHALL contain the base64-encoded hash(es) of the

documents to be signed.

9 Requests

This section specifies data components related to credentials and signatures that are applied in remote signing-

related processes specified in the CSC API [i.3]. How these data components are applied, is specified in separate

API or data formatting specifications.

f

18



9.1 credentialCreationRequest

The credentialCreationRequest object represents a request for creating a credential.

The credentialCreationRequest object is the union of the following:

certificatePolicy

The parameters in the table below

Parameter Presence Value Description

subjectData OPTIONAL subjectData Information to be included in the certificate associated with the

new credential.

9.2 credentialDeletionRequest

The credentialDeletionRequest object represents a request to delete a credential and possibly revoke the

corresponding certificate.

The credentialDeletionRequest object is composed of the following parameters.

Parameter Presence Value Description

credentialID REQUIRED String The credentialID to be deleted.

revoke OPTIONAL Boolean If this parameter is present and is set to true the certificate

corresponding to the deleted credential SHALL be revoked.

revocationReason REQUIRED

Conditional

Integer This parameter MUST be present if revoke is present and has value

true. This parameter MUST be ignored if revoke is not present or if

revoke is false. When revoking the certificate, a CRL reason code

MUST be specified as defined in RFC 5280 [16]. This MUST be a

value between 0-10, with 7 being unused. See RFC 5280 [16],

section 5.3.1.

9.3 signatureCreationRequest

The signatureCreationRequest object represents a request from a driving application to a signature creation

application for signing a document. It contains information about what to sign (document and other signed

attributes) and how to sign (formats and algorithms).

The signatureCreationRequest object is the union of the following:

One of documentData, documentReference, documentRepresentations

adesParameters

signingAlgorithm

9.4 signatureRequest

The signatureRequest object represents a request from a relying party to a signer or driving application for

signing a document.

The signatureRequest object is the union of the following:

One of documentData, documentReference

adesParameters

The parameters in the table below

f

19



Parameter Presence Value Description

signatureQualifier REQUIRED signatureQualifier Identifier of the signature type to be created (e.g. “eu_eidas_qes”

to denote a Qualified Electronic Signature according to eIDAS).

responseURI OPTIONAL String URI describing where the response to this signatureRequest is

expected to be sent to. The channel to the endpoint SHOULD be

mutually authenticated.

10 Authorization

This section specifies authorization-related data components that are applied in remote signing-related

processes specified in the CSC API [i.3]. How these data components are applied, is specified in separate API or

data formatting specifications.

10.1 signatureCreationApproval

The signatureCreationApproval object represents information required by the signer to give informed consent to

a signature creation.

The signatureCreationApproval object is composed of the following parameters.

Parameter Presence Value Description

credentialID REQUIRED

Conditional

String The identifier associated to the credential to authorize. At least one

of the two values credentialID and signatureQualifier SHALL be

present, both values MAY be present.

signatureQualifier REQUIRED

Conditional

signatureQualifier Identifier of the signature type to be created (e.g. “eu_eidas_qes”

to denote a Qualified Electronic Signature according to eIDAS). At

least one of the two values credentialID and signatureQualifier

SHALL be present, both values MAY be present.

numSignatures REQUIRED Integer The number of signatures to authorize. Multi-signature

transactions can be obtained by using a combination of array of

hash values and by calling multiple times the RSSP function to sign

a hash value.

documentDigests REQUIRED Array of documentInfo An array of elements containing authorization details (such as hash

values representing the documents and additional signed

attributes) relevant for each document to be signed. The AS

SHOULD use the label element in the user consent to designate the

document. If hashType is absent, the RSSP SHOULD interpret the

hash type as "dtbsr". The circumstantialData parameter MAY be

present if signature creation will be requested providing the

signer’s original document. The RSSP SHOULD provide instructions

for how the circumstantialData is created in e.g. the signature

creation policy.

hashAlgorithmOID REQUIRED String This hashing algorithm OID is used to generate the hash values in

documentDigests.

f

20


	Contents
	Foreword
	Revision history
	Acknowledgements
	Introduction
	Intellectual Property Rights
	Trademark notice
	Essential Patents
	Legal notices
	1 Scope
	2 Interpretation of requirement levels
	3 References
	3.1 Normative references
	3.2 Informative references

	4 Terms, definitions and abbreviations
	4.1 Terms and definitions
	4.2 Abbreviations
	4.3 JSON data types

	5 Conventions
	5.1 Text conventions
	5.2 Base64

	6 Architectures and use cases
	7 Basic data types
	7.1 adesParameters
	7.2 attribute
	7.3 certificatePolicy
	7.4 hash
	7.5 signatureQualifier
	7.6 signingAlgorithm
	7.7 subjectData

	8 Documents
	8.1 documentData
	8.2 documentInfo
	8.3 documentReference
	8.3.1 accessControlMethod
	8.3.1.1 Public access
	8.3.1.2 One-time password access


	8.4 documentRepresentations

	9 Requests
	9.1 credentialCreationRequest
	9.2 credentialDeletionRequest
	9.3 signatureCreationRequest
	9.4 signatureRequest

	10 Authorization
	10.1 signatureCreationApproval


