
CSC data model

bindings

version 1.0.0

f

1

Contents

Foreword

Revision history

Acknowledgements

Introduction

Intellectual Property Rights

Trademark notice

Essential Patents

Legal notices

1 Scope

2 Interpretation of requirement levels

3 References

3.1 Normative references

3.2 Informative references

4 Terms, definitions and abbreviations

4.1 Terms and definitions

4.2 Abbreviations

4.3 JSON data types

5 Conventions

5.1 Text conventions

6 Qualified electronic signature or seal request

6.1 Binding to protocols using JWT

6.1.1 signatureRequest for JWT

6.1.2 Example application

6.1.3 Security considerations

6.2 Binding to OID4VC

6.2.1 qesRequest

6.2.2 qesResponse

6.2.3 Example application

6.3 Transaction data processing

6.4 Transaction data rendering

7 Qualified electronic signature or seal approval

7.1 qesApprovalRequest

7.1.1 Transaction data parameters

7.1.2 Transaction authorization request example

7.2 qesApproval

7.2.1 Transaction data binding to credential formats

7.3 Example application

8 X.509 certificate

8.1 x509MetadataQuery

8.1.1 keyInfo

8.2 x509PresentationResponse

8.2.1 DCQL query and presentation response examples for X.509 credential

Foreword

This document is a work by members of the Cloud Signature Consortium, a nonprofit association founded by

industry and academic organizations for building upon existing knowledge of solutions, architectures and

protocols for Cloud-based Digital Signatures, also defined as “remote” Electronic Signatures.

f

2

The Cloud Signature Consortium has developed the present specification to make these solutions interoperable

and suitable for uniform adoption in the global market, in particular – but not exclusively – to meet the

requirements of:

the European Union's Regulation 910/2014 on Electronic Identification and Trust Services (eIDAS) [i.1],

which formally took effect on 1 July 2016, amended by Regulation 2024/1183 on the European Digital

Identity Framework [i.2].

Revision history

Version Date Version change details

1.0.0 14/10/2025 Public release, based on data model pre-releases

Acknowledgements

This work is the result of the contributions of several individuals from the Technical Working Group of the Cloud

Signature Consortium and some additional contributors.

Introduction

This specification defines bindings of the CSC data model [9] to various protocols that relate to, but are not part

of, the CSC API. It is not mandatory to use these bindings together with the CSC API. They are examples of how

the data model can be used in various scenarios. The bindings in this specification may be taken as is, or adopted

for a particular use.

Intellectual Property Rights

The Intellectual Property Rights Policy (IPR Policy) of the Cloud Signature Consortium is available at

https://cloudsignatureconsortium.org/about-us/intellectual-property/.

Trademark notice

The Cloud Signature Consortium logo is a Registered Trademark of the Cloud Signature Consortium:

EU Trademark number 015579048.

Essential Patents

IPRs essential or potentially essential to the present document may have been declared to the Cloud Signature

Consortium. The information pertaining to these essential IPRs, if any, is available on request from the Cloud

Signature Consortium secretariat at info@cloudsignatureconsortium.org.

No investigation, including IPR searches, has been carried out by the Cloud Signature Consortium. No guarantee

can be given as to the existence of other IPRs not referenced in the present document which are, or may be, or

may become, essential to the present document.

Legal notices

The Cloud Signature Consortium seeks to promote and encourage broad and open industry adoption of its

standard.

f

3

https://cloudsignatureconsortium.org/about-us/intellectual-property/
mailto:info@cloudsignatureconsortium.org

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA

4.0). To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

The present document does not create legal rights and does not imply that intellectual property rights are

transferred to the recipient or other third parties. The adoption of the specification contained herein does not

constitute any rights of affiliation or membership to the Cloud Signature Consortium VZW.

This document is provided “as is” and the Cloud Signature Consortium, its members and the individual

contributors, are not responsible for any errors or omissions.

The Trademark and Logo of the Cloud Signature Consortium are registered, and their use is reserved to the

members of the Cloud Signature Consortium VZW. Questions and comments on this document can be sent to

info@cloudsignatureconsortium.org.

1 Scope

This document describes bindings of the CSC data model[9] for use cases that are out of scope for CSC but may

be used in relation with the CSC API.

2 Interpretation of requirement levels

The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,

“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in RFC 2119 [1].

3 References

3.1 Normative references

The following documents, in whole or in part, are normatively referenced in this specification and are

indispensable for its application. For dated references, only the edition cited applies. For undated references

(regardless if a specific version is linked or not), the latest edition of the referenced document (including any

amendments or errata) applies.

[1] IETF RFC 2119: “Key words for use in RFCs to Indicate Requirement Levels”.

[2] IETF RFC 4648: “The Base16, Base32, and Base64 Data Encodings”.

[3] IETF RFC 2397: “The ‘data’ URL scheme”.

[4] IETF RFC 6749: “The OAuth 2.0 Authorization Framework”.

[5] IETF RFC 7515: “JSON Web Signature (JWS)”.

f

4

http://creativecommons.org/licenses/by-sa/4.0/
mailto:info@cloudsignatureconsortium.org
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc4648
https://www.rfc-editor.org/rfc/rfc2397
https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc7515

[6] IETF RFC 8259: “The JavaScript Object Notation (JSON) Data Interchange Format”.

[7] IETF RFC 9112: “HTTP/1.1”.

[8] IETF RFC 8610: “Concise Data Definition Language (CDDL): A Notational Convention to Express

Concise Binary Object Representation (CBOR) and JSON Data Structures”.

[9] Cloud Signature Consortium, “Data model for remote signature applications”.

[10] IETF RFC 7519: “JSON Web Token (JWT)”.

[11] ETSI EN 319 102-1 “Electronic Signatures and Trust Infrastructures (ESI); Procedures for

Creation and Validation of AdES Digital Signatures; Part 1: Creation and Validation”.

3.2 Informative references

[i.1] Regulation (EU) No 910/2014 of the European Parliament and of the Council of 23 July 2014

on electronic identification and trust services for electronic transactions in the internal market and

repealing Directive 1999/93/EC.

[i.2] Regulation (EU) 2024/1183 of the European Parliament and of the Council of 11 April 2024

amending Regulation (EU) No 910/2014 as regards establishing the European Digital Identity

Framework.

[i.3] CSC Architectures and protocols for remote signature applications - version 2.

[i.4] IETF RFC 9396: “OAuth 2.0 Rich Authorization Requests”.

[i.5] OpenID for Verifiable Presentations, Version 1.0.

[i.6] OpenID for Verifiable Credentials.

[i.7] IETF RFC 3739: “Qualified Certificates Profile”.

[i.8] W3C Subresource Integrity, Recommendation 23 June 2016.

[i.9] ETSI TS 119 001: “Electronic Signatures and Infrastructures (ESI); The framework for

standardization of signatures; Definitions and abbreviations”.

[i.10] IETF RFC 5280: “Internet X.509 Public Key Infrastructure Certificate and Certificate

Revocation List (CRL) Profile”.

f

5

https://www.rfc-editor.org/rfc/rfc8259
https://www.rfc-editor.org/rfc/rfc9112
https://www.rfc-editor.org/rfc/rfc8610
https://www.rfc-editor.org/rfc/rfc8610
https://www.rfc-editor.org/rfc/rfc7519
https://www.etsi.org/deliver/etsi_en/319100_319199/31910201/01.04.01_60/en_31910201v010401p.pdf
https://www.etsi.org/deliver/etsi_en/319100_319199/31910201/01.04.01_60/en_31910201v010401p.pdf
https://eur-lex.europa.eu/eli/reg/2014/910/2024-10-18
https://eur-lex.europa.eu/eli/reg/2024/1183/oj
https://cloudsignatureconsortium.org/resources/download-api-specifications/
https://www.rfc-editor.org/rfc/rfc9396
https://openid.net/specs/openid-4-verifiable-presentations-1_0.html
https://openid.net/sg/openid4vc/specifications/
https://www.rfc-editor.org/rfc/rfc3739
https://www.w3.org/standards/history/sri-1/
https://www.etsi.org/deliver/etsi_tr/119000_119099/119001/01.02.01_60/tr_119001v010201p.pdf
https://www.etsi.org/deliver/etsi_tr/119000_119099/119001/01.02.01_60/tr_119001v010201p.pdf
https://www.rfc-editor.org/rfc/rfc5280
https://www.rfc-editor.org/rfc/rfc5280

[i.11] ISO/IEC 18013-5: “Personal identification — ISO-compliant driving licence — Part 5: Mobile

driving licence (mDL) application”.

[i.12] draft-ietf-oauth-sd-jwt-vc-08: “SD-JWT-based Verifiable Credentials (SD-JWT VC)”.

Note 1: The reference [i.12] will be updated with a final version before official publication.

[i.13] ETSI TS 119 312: “Electronic Signatures and Infrastructures (ESI); Cryptographic Suites”.

[i.14] W3C Digital Credentials, Working Draft 10 July 2025.

4 Terms, definitions and abbreviations

4.1 Terms and definitions

For the purposes of this specification, the following terms and definitions apply.

authorization server: hereon abreviated as “AS”, server enabling users to authorize privileged operations.

Note 2: The AS is usually the endpoint described in CSC API [i.3] Section 8.4.

base64: Base64 as defined by RFC 4648 [2] Section 4, i.e. standard alphabet with padding SHALL be used. See

also paragraph about Base64 in Conventions section of this document.

base64url: Denotes the URL-safe Base64 encoding as defined in RFC 4648 [2] Section 5 and further precised in

RFC 7515 [5] Section 2 and Appendix C. Padding SHALL NOT be used.

digital signature: data appended to, or a cryptographic transformation of a data unit that allows a recipient of

the data unit to prove the source and integrity of the data unit and protect against forgery e.g. by the recipient

[i.9]

driving application: component that uses a signature creation application to sign a document as identified by

interacting with the relying party and/or signer.

electronic signature: digital signature created by using a certificate issued to a natural person ensuring the

integrity and origin of the document and the signatory commitment to the document content.

electronic seal: digital signature created by using a certificate issued to a legal person or business unit ensuring

the integrity and origin of the document, without necessarily committing to the content.

identity wallet: electronic means for identification or presentation of electronic attestations of attributes, for

example at an AS.

remote signing service provider: service provider managing a set of credentials on behalf of multiple users and

allowing them to create a remote signature with a stored credential.

signature: shorthand for electronic signature or electronic seal.

signature creation application: application that accepts signer’s original document and produces a signature or

signed document in accordance with AdES [11].

f

6

https://www.iso.org/standard/69084.html
https://www.iso.org/standard/69084.html
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-sd-jwt-vc-08
https://www.etsi.org/deliver/etsi_TS/119300_119399/119312/01.05.01_60/ts_119312v010501p.pdf
https://www.w3.org/TR/2025/WD-digital-credentials-20250710/

signer’s original document: some document types (e.g. PDF, XML, and JSON) require formatting before SDR can

be computed. signer’s original document is the original document before any formatting.

URL-encoded: encoded using the application/x-www-form-urlencoded format as defined in RFC 6749 [4]

Appendix B.

4.2 Abbreviations

This section lists abbreviations used in this specification.

AS: authorization server

DA: driving application

eIDAS: Regulation (EU) No 910/2014 [i.1] with amendments of Regulation (EU) 2024/1183 [i.2]

OID4VC OpenID for Verifiable Credentials, see [i.6].

OpenID4VP OpenID for Verifiable Presentations, see [i.5].

QES Qualified Electronic Signature or Seal

RP: relying party

RSSP: remote signing service provider

SCA: signature creation application

SCD: signature creation device

ECTA: South African Electronic Communications and Transactions Act [i.15]

4.3 JSON data types

Unless otherwise specified, the following data types from JSON [6] are used.

Object: a JSON object

Array: a homogeneous JSON array

String: a JSON string

Integer: a non-negative JSON number

5 Conventions

5.1 Text conventions

This specification adopts the following text conventions to help identify various types of information.

Table 1 – Text conventions

f

7

Text convention Example

The vertical bar (|) indicates a possible value for selection or outcome and

SHALL be interpreted as “exclusive or”.

YES | NO

Text in colored boxes is example code.

POST /csc/v2/credentials/info
HTTP/1.1

Italic text indicates the name of a data component or data type. A documentInfo object contains a String parameter

named hash.

… the meta parameter in the credential query.

Inline code blocks are used for other code than names of a data component or

data type.

The String value "public" or "OTP" can be used.

… a remotely hosted document or a data: URL …

… by calling the signatures/signHash endpoint …

In general, data types and data components defined in this specification use the “camelCase” notation, like the

data type documentInfo or the data component (parameter) authType. In case the name contains an

abbreviation, this abbreviation is written with uniform casing, like hashAlgorithmOID (“OID” in uppercase,

because it is not the first word) and qesRequest (“qes” in lowercase, because it is the first word).

However, names and parameters that are defined in other standards, like those in the domain of authentication

and related to OAuth, are used here in their original format to facilitate understanding and interoperability, using

“snake_case”, like refresh_token, i.e., two names separated by an underscore. This specification is self-contained

and in general does not refer to any external data types other than JSON data types. When this specification

refers to external data types, that reference is specified in the respective section. Therefore, no general

conventions are defined for external data types.

Whenever a data type is specified as an Object with particular parameters or attributes, instances with this type

can be referred to as “object” in lowercase. For example, a qesRequest object is an Object that conforms to the

requirements specified in the qesRequest section.

6 Qualified electronic signature or seal request

A QES is an advanced electronic signature or seal created using a qualified certificate as specified in RFC 3739

[i.7], bound to a qualified signature or seal creation device, as defined in the associated legal framework.

The signatureRequest data object from the data model[9] is used when a relying party requests that a signer

signs a document. The relying party must transfer the signatureRequest to the driving application. The driving

application may return the signed document as part of a direct interaction between the relying party and the

driving application. When there is no direct connection between the relying party and the driving application, the

driving application may upload the signed document to the responseURI specified in the signatureRequest.

The transmission of the signatureRequest from the relying party to the driving application must be protected in

integrity and confidentiality and the driving application must be able to authenticate the relying party.

6.1 Binding to protocols using JWT

One way to transmit the signatureRequest is by transmitting a JWT[10]. This section does not require any specific

transport protocol for the JWT but gives a few examples. In some examples, the relying party posts the JWT to an

endpoint provided by the driving application. In other examples, the relying party transmits a URL to a location

where the JWT can be downloaded by the driving application. The relying party may, for instance, display a QR-

code encoding the URL of the JWT to the signer. The signer can then transmit the URL to the driving application.

f

8

6.1.1 signatureRequest for JWT

6.1.1.1 Transaction data parameters

Parameter Presence Value Description

iss OPTIONAL String Issuer as defined in [10]. iss MUST identify the relying party.

signatureRequests REQUIRED Array of

signatureRequest

An array of elements containing details about the requested signing

operation. All elements SHALL be of type signatureRequest with

documentReference as defined in [9]. The AS SHOULD use the label

element in the user consent to designate the document. Signature

applications that support this transaction data type MUST support

data: URLs [3] with base64 encoding in the href parameter. They

MAY restrict the supported media types and the acceptable body

length.

Note 3: The iss claim is included to allow the driving application to validate that the relying party is authorized to

request signatures. This specification does not define any method for validating the authorization of the

relying party. Implementors should create a profile of this binding that describes methods for validating

relying party authorization. Implementors may add additional claims (e.g. x5c) to support the authorization

of the relying party.

6.1.2 Example application

In this non-normative example, the driving application is running on the device of the signer next to, or as part of,

an identity wallet.

The relying party prepares the following signatureRequest JWT header:

and data:

After signing, the resulting JWT may look like this:

{

 "alg": "ES384",
 "typ": "JWT"

}

{

 "iss": "https://example.com",
 "signatureRequests": [

 {
 "label": "Example Terms of Service",

 "access": { "type": "public" },
 "href": "https://example.com/terms-and-conditions.pdf",

 "checksum": "sha256-HZQzZmMAIWekfGH0/ZKW1nsdt0xg3H6bZYztgsMTLw0=",
 "signature_format": "P",

 "conformance_level": "AdES-B-B",
 "signed_envelope_property": "Certification",

 "signatureQualifier": "eu_eidas_qes",
 "responseURI": "https://example.com/signatureResponse/123/"

 }
]

}

f

9

eyJhbGciOiJFUzM4NCIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJodHRwczovL2V4YW1wbGUuY29tIiwic
2lnbmF0dXJlUmVxdWVzdHMiOlt7ImxhYmVsIjoiRXhhbXBsZSBUZXJtcyBvZiBTZXJ2aWNlIiwiYWN
jZXNzIjp7InR5cGUiOiJwdWJsaWMifSwiaHJlZiI6Imh0dHBzOi8vZXhhbXBsZS5jb20vdGVybXMtY
W5kLWNvbmRpdGlvbnMucGRmIiwiY2hlY2tzdW0iOiJzaGEyNTYtSFpRelptTUFJV2VrZkdIMC9aS1c
xbnNkdDB4ZzNINmJaWXp0Z3NNVEx3MD0iLCJzaWduYXR1cmVfZm9ybWF0IjoiUCIsImNvbmZvcm1hb
mNlX2xldmVsIjoiQWRFUy1CLUIiLCJzaWduZWRfZW52ZWxvcGVfcHJvcGVydHkiOiJDZXJ0aWZpY2F
0aW9uIiwic2lnbmF0dXJlUXVhbGlmaWVyIjoiZXVfZWlkYXNfcWVzIiwicmVzcG9uc2VVUkkiOiJod
HRwczovL2V4YW1wbGUuY29tL3NpZ25hdHVyZVJlc3BvbnNlLzEyMy8ifV19.u2rHWH4PdaCi561Uvt
B_GJmI-8KVFA7ru480HhOHRPtTUr2xvDHUu4pYogL8-MMTO5MaEBnfgYTlcGA01escOJ2CihQXXYt5
3gI1ooUMmBSqHhYb7-lZJh3fgo_fSuPb

The relying party makes the JWT available at a URL, e.g. https://example.com/signatureRequst/123/ and prepares

a QR-code that encodes the URL. The relying party shows the QR-code to the signer who scans the QR-code with

the driving application. The driving application downloads the JWT and validates that the issuer is authorized. If

the issuer is authorized, the driving application invokes the signature creation application with parameters from

the JWT.

6.1.3 Security considerations

The JWT SHALL be signed.

The signature algorithm used to sign the JWT SHOULD be an approved algorithm.

The driving application SHALL validate the signature of the JWT.

The driving application SHOULD validate that the issuer is authorized to request signatures.

6.2 Binding to OID4VC

6.2.1 qesRequest

The transaction data must be associated with a qualified certificate for creating a QES. This credential can be

identified by a field credential_ids specified below. One way to identify the credential is an x509MetadataQuery.

The transaction data type identifier for requesting QES is: "https://cloudsignatureconsortium.org/2025/qes".

6.2.1.1 Transaction data parameters

Parameter Presence Value Description

type REQUIRED String A data type identifier. MUST be

"https://cloudsignatureconsortium.org/2025/qes".

credential_ids REQUIRED

Conditional

Array of String References to credentials to approve a transaction with. MUST be

included if and only if the protocol for handling transaction data

requires it.

signatureRequests REQUIRED Array of

signatureRequest

An array of elements containing details about the requested signing

operation. All elements SHALL be of type signatureRequest with

documentReference as defined in [9]. The AS SHOULD use the label

element in the user consent to designate the document. Signature

applications that support this transaction data type MUST support

data: URLs [3] with base64 encoding in the href parameter. They

MAY restrict the supported media types and the acceptable body

length.

Note 4: The credential_ids data component is included for compatibility with OpenID4VP [i.5]. Typically, it refers

to dynamic local identifiers that are defined in a query. In contrast, credentialID is a static credential

identifier defined at a remote signing service provider.

Note 5: Since qesRequest is used to request a QES, it is important to specify the applicable trust framework.

Therefore, in contrast to the CSC API [i.3] which requires the signatureQualifier to be present conditionally,

this binding always requires the signatureQualifier to be present.

f

10

Note 6: This transaction data type is likely to change in future versions of this document.

6.2.1.2 Transaction authorization request example

A non-normative example of a base64url-decoded OpenID4VP [i.5] transaction_data string:

In this example, the credential identified by "xyz123" in the associated DCQL query will be used to sign the

provided documents, after obtaining them at the Signature Application.

Note 7: The credential ID in OpenID4VP [i.5] is an opaque string defined by the creator of the transaction data

and unrelated to the credential ID in the CSC API [i.3].

While transaction_data is defined by the OpenID4VP [i.5] specification and therefore base64url-encoding is

applied on the entire Object, for data structures within the object, which are defined by this document, the

encoding defined in this document SHALL be used (e.g. the included checksum data element follows the

definition of Common documentInfo parameters, it uses the Subresource Integrity [i.8] data format with base64-

encoded checksum and without padding).

For obtaining the first document, the Signature Application displays a one-time password to the user. When the

user enters the same one-time password in the Driving Application, the Driving Application unlocks the resource

at the URI for download. This mechanism addresses the risk of over-the-shoulder attacks in cross-device

scenarios.

{
 "type": "https://cloudsignatureconsortium.org/2025/qes",

 "credential_ids": ["xyz123"],
 "signatureQualifier": "eu_eidas_qes",

 "signatureRequests": [
 {

 "label": "Example Contract",
 "access": { "type": "OTP", "oneTimePassword": "51623" },

 "href": "https://protected.rp.example/contract-01.pdf?
token=HS9naJKWwp901hBcK348IUHiuH8374",

 "checksum": "sha256-sTOgwOm+474gFj0q0x1iSNspKqbcse4IeiqlDg/HWuI=",
 "signature_format": "P",

 "conformance_level": "AdES-B-B",
 "signed_envelope_property": "Certification",

 "signAlgo": "1.2.840.113549.1.1.1"
 },

 {
 "label": "Example Terms of Service",

 "access": { "type": "public" },
 "href": "https://public.rp-cdn.example/terms-and-conditions.pdf",

 "checksum": "sha256-HZQzZmMAIWekfGH0/ZKW1nsdt0xg3H6bZYztgsMTLw0=",
 "signature_format": "P",

 "conformance_level": "AdES-B-B",
 "signed_envelope_property": "Certification",

 "signAlgo": "1.2.840.113549.1.1.1"
 },

 {
 "label": "Example Configuration",

 "href": "data:application/json;base64,eyJleGFtcGxlS2V5IjoiZXhhbXBsZVZhbHVlIn0K",
 "signature_format": "J",

 "conformance_level": "AdES-B-B",
 "signed_envelope_property": "Attached",

 "signAlgo": "1.2.840.113549.1.1.1"
 }

]
}

f

11

6.2.2 qesResponse

In a QES transaction using an X.509 certificate, the private key corresponding to the public key identified in the

X.509 certificate is used to create the QES. The qesResponse object is composed of the following parameters:

Note 8: The below specification defines common response data that could be used in OpenID4VP responses

(e.g., VP token response or DCQL response). There is no requirement of specific encoding in OpenID4VP.

CSC is by intention, for consistency and compatibility with other data elements specified by CSC, defining

the below data elements with base64 encoding, and not base64url-encoded as in other elements defined

in OpenID4VP.

Parameter Presence Value Description

documentWithSignature REQUIRED

Conditional

Array of String One or more base64 encoded signatures enveloped within the

documents. MUST be included only if the OpenID4VP [i.5] request’s

transaction_data did not specify a responseURI AND if the format

of the signed data object implies the signature is embedded in the

document (use e.g., for PAdES signatures, or CAdES/XAdES

enveloped signatures).

signatureObject REQUIRED

Conditional

Array of String One or more base64 encoded signatures that are detached from or

contain the signed data. MUST be included only if the request’s

transaction_data did not specify a responseURI AND if the format

of the signed data object implies the signature is not embedded in

the document (use e.g., for CAdES/XAdES detached or enveloping

signatures).

Note 9: In case of responseURI being specified in the transaction data, neither documentWithSignature nor

signatureObject will be contained in the qesResponse.

6.2.3 Example application

In the Wallet-centric model, a Relying Party requests a QES transaction from a Wallet (Driving Application) using

an X.509 credential:

Note 10: As transaction_data relates to OpenID4VP [i.5] specification, it is base64url-encoded (i.e. without

padding).

Note 11: The credential ID in DCQL is an opaque string defined by the creator of the query and unrelated to the

credential ID in the CSC API [i.3].

Here, the transaction_data contains a base64url-encoded Object in UTF-8 encoding:

{

 "dcql_query": {
 "credentials": [

 {
 "id": "abc234",

 "format": "https://cloudsignatureconsortium.org/2025/x509",
 "meta": {}

 }
]

 },
 "transaction_data": [

 "ewogICAgInR5cGUiOiAiaHR0cHM6Ly9jbG91ZHNpZ25hdHVyZWNvbnNvcnR..."
]

}

f

12

Note 12: While transaction_data is defined by OpenID4VP specification and therefore base64url-encoding is

applied on the entire JSON, the data structure within the Object which is defined by this document use the

encoding defined in this document (e.g. the included checksum data element SHALL follow the

Subresource Integrity [i.8] data format with base64-encoded checksum and without padding).

After creating the QES, the Wallet responds with the QES:

6.3 Transaction data processing

If the qesRequest is provided in the context of a credential that cannot be used to create a QES with the specified

signatureQualifier, the Signature Application MUST abort the transaction.

If a signatureRequest object contains both a href and a checksum value, the Signature Application MUST verify

resource integrity against the checksum and abort the transaction upon failure.

The Signature Application SHALL log the provided transaction data and the user’s decision to approve or reject

the transaction.

If the responseURI is provided and the QES is created, the Signature Application SHALL attempt to send the

response to the identified endpoint.

When sending the response to a responseURI with the https: URI scheme, the Signature Application SHALL use

HTTP/1.1 POST according to RFC 9112 [7] as follows.

HTTP POST request messages SHALL have the following structure:

POST <responseURI path> HTTP/1.1
Host <responseURI host>
Content-Length: <qesResponse length>
Content-Type: application/json

<qesResponse>

HTTP POST response messages, upon successful receipt, SHALL have the following structure:

{
 "type": "https://cloudsignatureconsortium.org/2025/qes",

 "credential_ids": ["abc234"],
 "signatureQualifier": "eu_eidas_qes",

 "signatureRequests": [
 {

 "label": "Example Terms of Service",
 "access": { "type": "public" },

 "href": "https://public.rp-cdn.example/terms-and-conditions.pdf",
 "checksum": "sha256-HZQzZmMAIWekfGH0/ZKW1nsdt0xg3H6bZYztgsMTLw0=",

 "signature_format": "P",
 "conformance_level": "AdES-B-B",

 "signed_envelope_property": "Certification",
 "signAlgo": "1.2.840.113549.1.1.1"

 }
]

}

{
 "abc234": {

 "qes": {
 "documentWithSignature": [

 "<base64-encoded document with signature>"
]

 }
 }

}

f

13

HTTP/1.1 200 OK

Other request or response headers MAY be included.

The response endpoint SHOULD process only the first successfully received request.

6.4 Transaction data rendering

The Signature Application SHALL render the provided transaction data to the user upon authorization or upon

reviewing logs. The rendering can be visual, audible, or through other means in such a way that the user can be

expected to understand it. Some transaction data may only be fully rendered upon the user’s request, for

example, when requesting detailed inspection of the transaction data. The following rules apply to all fields

included in QES transaction data.

Parameter Rendering requirements

type The Signature Application SHALL always render a clear indication that the transaction creates a

QES, in such a way that the user can distinguish this from any other transactions performed using

the application.

signatureQualifier The Signature Application SHALL always render a clear indication of whether the QES is an

electronic signature or an electronic seal, The Signature Application SHALL render a clear

indication of the trust framework under which it is qualified.

signatureRequests.label The Signature Application SHALL always render the full label if specified. If unspecified, the

Signature Application SHALL clearly indicate that the document has no label.

signatureRequests.access If the type is "OTP", the Signature Application SHALL render the oneTimePassword value when

the user may need to enter it into the Driving Application to release access to the document

using the provided signatureRequestInfos/documentInfo/href value.

signatureRequests.href The Signature Application SHALL enable the user to load the document in an application that the

user has configured for the media type.

signatureRequests.checksum If the document is specified with href, the Signature Application SHALL indicate whether resource

integrity has been automatically verified or not.

signatureRequests.signed_props If specified, the Signature Application SHALL render the full set of attribute names and values to

the user. If the Signature Application recognises an attribute name and has a custom way of

rendering it that helps the user understand the consequences of the transaction, it MAY render

these attributes in a custom way. If the Signature Application does not recognise the attribute

name, it SHALL render the attribute value as-is.

signatureRequests.signature_format If specified, the Signature Application SHALL enable the user to distinguish which signature

format is required in the transaction.

signatureRequests.conformance_level If specified, the Signature Application SHALL enable the user to distinguish which conformance

level is required in the transaction.

responseURI The Signature Application SHALL enable the user to learn unambiguously which URI is used.

Note 13: If the transaction data contains href but the user chooses not to load the document, the Signature

Application may need to retrieve the document anyway later to be able to compute the data to be signed.

However, this retrieval can be done using streaming, while typically a user render requires storing the

whole document.

7 Qualified electronic signature or seal approval

This transaction data type lets the credential express the user’s approval for QES creation during an authorization

flow run by a server trusted by the provider that remotely manages the qualified signature or seal creation

device.

f

14

7.1 qesApprovalRequest

The transaction data type identifier for approving qualified electronic signatures or seals (QES) is:

"https://cloudsignatureconsortium.org/2025/qes-approval". The transaction data must be associated with a

credential for approval of QES creation. This credential can be identified by a field credential_ids specified below.

One way to identify the credential is an x509MetadataQuery.

7.1.1 Transaction data parameters

The qesApprovalRequest object is the union of the following:

signatureCreationApproval (see “Data model for remote signature applications” [9])

The parameters in the table below

Parameter Presence Value Description

type REQUIRED String A data type identifier. MUST be

"https://cloudsignatureconsortium.org/2025/qes-

approval".

credential_ids REQUIRED

Conditional

Array of String References to credentials to approve a transaction with. MUST be

included if and only if the protocol for handling transaction data

requires it.

locations OPTIONAL Array of String The locations of remote signing service providers as defined in RFC

9396 [i.4].

Note 14: The credential_ids data component is included for compatibility with OpenID4VP [i.5]. Typically, it refers

to dynamic local identifiers that are defined in a query. In contrast, credentialID is a static credential

identifier defined at a remote signing service provider.

Note 15: While circumstantialData may not be part of transaction data, the transaction may be approved as part

of authorizing access to the signatures/signDoc CSC API [i.3] endpoint. The authorization details for that

request may need to include the circumstantialData. In general, while there is overlap between transaction

data and authorization details, these do not always need to contain the same values.

Note 16: This transaction data type is likely to change in future versions of this document.

7.1.2 Transaction authorization request example

A non-normative example of a base64url-decoded OpenID4VP [i.5] transaction_data string:

f

15

In this example, the credential identified by "xyz123" in the associated DCQL query will be used to approve the

signature of the provided documents.

Note 17: The credential ID in OpenID4VP [i.5] is an opaque string defined by the creator of the transaction data

and unrelated to the credential ID in the CSC API [i.3].

While transaction_data is defined by the OpenID4VP [i.5] specification and therefore base64url-encoding is

applied on the entire Object, for data structures within the object, which are defined by this document, the

encoding defined in this document SHALL be used (e.g. the included checksum data element follows the

definition of Common documentInfo parameters, it uses the Subresource Integrity [i.8] data format with base64-

encoded checksum and without padding).

7.2 qesApproval

The result of approval is a single data component that binds the credential presentation to the transaction data.

The qesApproval is a String containing a base64 encoded hash digest of an encoded qesApprovalRequest. The

hash algorithm SHALL be identified using the hashAlgorithmOID parameter of the qesApprovalRequest. The

encoding used for the hash input SHALL preserve the UTF-8 encoded qesApprovalRequest as originally provided.

The encoding of the qesApprovalRequest in the qesApproval hash input SHALL depend on the format of the

credential using which the qesApproval is authenticated.

7.2.1 Transaction data binding to credential formats

Note 18: This section on binding QES transactions to other credentials is still being validated with experts and

can be changed in future versions of this document.

This section specifies the binding to two formats:

{
 "type": "https://cloudsignatureconsortium.org/2025/qes-approval",

 "credential_ids": ["xyz123"],
 "numSignatures": 2,

 "signatureQualifier": "eu_eidas_qes",
 "documentInfos": [

 {
 "label": "Example Contract",

 "hash": "sTOgwOm+474gFj0q0x1iSNspKqbcse4IeiqlDg/HWuI=",
 "hashType": "sodr",

 "access": { "type": "OTP", "oneTimePassword": "51623" },
 "href": "https://protected.rp.example/contract-01.pdf?token=HS9naJKWwp901hBcK348IUHiuH8374",

 "checksum": "sha256-sTOgwOm+474gFj0q0x1iSNspKqbcse4IeiqlDg/HWuI="
 },

 {
 "label": "Example Terms of Service",

 "hash": "HZQzZmMAIWekfGH0/ZKW1nsdt0xg3H6bZYztgsMTLw0=",
 "hashType": "sodr",

 "access": { "type": "public" },
 "href": "https://public.rp-cdn.example/terms-and-conditions.pdf",

 "checksum": "sha256-HZQzZmMAIWekfGH0/ZKW1nsdt0xg3H6bZYztgsMTLw0="
 },

 {
 "label": "Example Invoice",

 "hash": "nL7zQmAKfQ2jADrOxkEZh2UqV4Lx4WsmelSivP6LjoQ=",
 "hashType": "sodr",

 "access": { "type": "OTP", "oneTimePassword": "83920" },
 "href": "https://protected.rp.example/invoice-2025-07.pdf?token=jk47ns88sna9a",

 "checksum": "sha256-nL7zQmAKfQ2jADrOxkEZh2UqV4Lx4WsmelSivP6LjoQ="
 }

],
 "hashAlgorithmOID": "2.16.840.1.101.3.4.2.1"

}

f

16

ISO/IEC 18013-5-compliant encoding

SD-JWT VC-based encoding

7.2.1.1 ISO/IEC 18013-5-compliant encoding

This section applies to QES transactions using credentials in ISO/IEC 18013-5 mdoc [i.11] format.

The qesApproval SHALL be protected in a DeviceSigned data structure.

Note 19: Since the qesApproval value is dynamic, it could not be signed by the issuer.

The qesApproval SHALL be identified using the NameSpace value "org.cloudsignatureconsortium.dm.1".

The qesApproval SHALL be identified using the DataElementIdentifier value "qesApproval".

The qesApproval SHALL be represented as a DataElementValue encoded as a CDDL [8] bstr value in CBOR,

containing the SHA-256 hash digest without Base64 encoding this digest.

The hash input to create qesApproval SHALL be the UTF-8 encoded qesApprovalRequest.

Note 20: If the qesApprovalRequest is provided with base64url encoding, such as in OpenID4VP [i.5], this means

that this value needs to be base64url decoded before hashing.

Note 21: An ISO/IEC 18013-5 mdoc needs to have explicit support to enable this application. In particular:

The mdoc type, typically specified in a rulebook, needs to include the qesApproval attribute.

The mdoc needs to be issued with a KeyAuthorizations object that includes:

"org.cloudsignatureconsortium.dm.1" in AuthorizedNameSpaces;

the mapping from "org.cloudsignatureconsortium.dm.1" to qesApproval in

AuthorizedDataElements.

7.2.1.2 SD-JWT VC-based encoding

This section applies to QES transactions using credentials in SD-JWT VC [i.12] format.

The qesApproval SHALL be protected in a Key Binding JWT included in the presentation of the SD-JWT VC.

The qesApproval SHALL be identified using the top-level claim key

"org.cloudsignatureconsortium.dm.1.qesApproval".

The qesApproval SHALL be represented as a String.

The hash input to create qesApproval SHALL be the base64url encoded UTF-8 encoded qesApprovalRequest.

Note 22: The SD-JWT VC standard does not specify the inclusion of additional top-level claims in the Key Binding

JWT. However, it is expected that wallets only return the

"org.cloudsignatureconsortium.dm.1.qesApproval" claim for credentials that are issued with the intention

to support the authorization of QES creation. This intention can, for example, be expressed in a rulebook

that specifies the SD-JWT VC type.

f

17

7.3 Example application

In the Provider-centric model, the AS is related to a trust service provider managing a remote QSCD. When

issuing a qualified certificate to a user, the trust service provider also issues a “service user attestation” as an

attestation of attributes in mdoc or SD-JWT VC format with qesApproval support. In this example, the attestation

has type "com.example.service.1.user" specified in a rulebook with the following attributes:

Namespace Attribute identifier Specification

"com.example.service.1" userName A CDDL [8] tstr identifying the user at the AS.

"com.example.service.1" credentialID A CDDL [8] tstr identifying the credential at the AS.

"org.cloudsignatureconsortium.dm.1" qesApproval Specified in qesApproval.

When authorizing the creation of a QES, the AS requests identification using this attestation, bound to QES

transaction data:

Note that the AS specifically asks for an attestation of the attribute credentialID equal to GX0112348, which

corresponds with an example credential managed in the remote QSCD for user willeke.

Here, the transaction_data contains a base64url-encoded Object in UTF-8 encoding:

After user authorization of the transaction towards their identity wallet, the identity wallet returns to the AS the

verifiable presentation of the service credential:

{

 "dcql_query": {
 "credentials": [

 {
 "id": "qscd_service_attestation",

 "format": "mso_mdoc",
 "meta": {

 "doctype_value": "com.example.service.1.attestation"
 },

 "claims": [
 { "path": ["com.example.service.1", "userName"], "values": ["willeke"] },

 { "path": ["com.example.service.1", "credentialID"], "values": ["GX0112348"] },
 { "path": ["org.cloudsignatureconsortium.dm.1", "qesApproval"] }

]
 }

]
 },

 "transaction_data": [
 "ewogICAgInR5cGUiOiAiaHR0cHM6Ly9jbG91ZHNpZ25hdHVyZWNvbnNvcnR..."

]
}

{

 "type": "https://cloudsignatureconsortium.org/2025/qes-approval",
 "credential_ids": ["xyz123"],

 "numSignatures": 2,
 "signatureQualifier": "eu_eidas_qes",

 "documentInfos": [
 {

 "label": "Example Terms of Service",
 "hash": "sTOgwOm+474gFj0q0x1iSNspKqbcse4IeiqlDg/HWuI=",

 "hashType": "dtbsr",
 "access": { "type": "OTP", "oneTimePassword": "51623" },

 "href": "https://protected.rp.example/contract-01.pdf?token=HS9naJKWwp901hBcK348IUHiuH8374",
 "checksum": "sha256-sTOgwOm+474gFj0q0x1iSNspKqbcse4IeiqlDg/HWuI="

 }
],

 "hashAlgorithmOID": "2.16.840.1.101.3.4.2.1"
}

f

18

This DeviceResponse object in this example is a CBOR object matching the following CDDL [8]:

{
 "version": "1.0",
 "documents": [
 {
 "docType": "com.example.service.1.attestation",
 "issuerSigned": {
 "nameSpaces": {
 "com.example.service.1": {
 "userName": "willeke",
 "credentialID": "GX0112348"
 }
 },
 "issuerAuth": IssuerAuth ; from ISO/IEC 18013-5
 },
 "deviceSigned": {
 "nameSpaces": #6.24(bstr .cbor {
 "org.cloudsignatureconsortium.dm.1": {
 "qesApproval": bstr .size 32 ; SHA-256 hash
 }
 }),
 "deviceAuth": DeviceAuth ; from ISO/IEC 18013-5
 }
 }
],
 "status": 0
}

After validating the presented attestation using the DeviceResponse, the AS is assured of the identity of the user

and the consent to authorize QES creation with the specified credentialID and data to be signed. Subsequently,

the AS may proceed with any other needed steps to obtain an authorization grant from the resource owner.

Note 23: In this example, the DeviceResponse object identifies the user towards the AS, but not towards the

remote QSCD. Also, its DeviceAuth property can be verified only by the AS acting as an mdoc reader, and

not by other roles. Therefore, the DeviceResponse object is not signature activation data. The AS could rely

on the validation of the electronic attestation of attributes to create an identity assertion for use in the

signature activation data. Depending on the signature activation protocol, additional steps may include

cryptographically binding the credentialID and the data to be signed to the signature activation data. The

specification of such steps is out of scope for this document.

8 X.509 certificate

This section specifies the X.509 credential formats for use in remote signature specifications. Credential formats

are applied in the OpenID for Verifiable Credentials (OID4VC) series of standards [i.6]. These formats are

specified in addition to OpenID4VP [i.5] Appendix B.

The credential format identifier for X.509 certificates is: "https://cloudsignatureconsortium.org/2025/x509".

A request for proof of possession of an X.509 certificate MAY include transaction_data for creating electronic

signatures or seals using the queried certificate. A successful credential response includes the created electronic

signatures or seals.

Note 24: The transaction data type specifies which parameters are included and how these are processed. These

parameters represent signer’s original documents, signed properties, and processing rules. One applicable

transaction data type is specified under Qualified electronic signature or seal request. In OID4VC terms, the

result of creating an electronic signature or seal is a presentation of the X.509 certificate, bound to the

transaction data.

{
 "abc123": ["<base64url-encoded DeviceResponse>"]

}

f

19

This section defines X.509 certificate-specific (DCQL) credential query and response types:

x509MetadataQuery: Parameters in the meta parameter in the credential query.

x509PresentationResponse: Attributes in the presentation response.

These types are specified according to the following sections. There are no parameters defined to query specific

claims in an X.509 certificate.

8.1 x509MetadataQuery

Parameter Presence Value Description

certificateFingerprints OPTIONAL Array of [hash] Definition of acceptable certificate fingerprints. Only hashing

algorithms as strong or stronger than SHA-256 SHALL be used. The

hash algorithm SHOULD follow the recommendations of ETSI TS

119 312 [i.13].

certificatePolicies OPTIONAL Array of String List of OIDs identifying applicable certificate policies. Default value:

[].

keys OPTIONAL Array of keyInfo Allowed signing key configurations. If omitted, all signing key

configurations are allowed.

If the certificatePolicies are specified, the response SHALL only include a certificate that includes at least one of

the listed certificatePolicies.

If certificateFingerprints are specified, the response SHALL only include a certificate that matches one of the

listed fingerprints.

8.1.1 keyInfo

The keyInfo object is composed of the following parameters:

algo

len

curve

specified according to the following table:

Parameter Presence Value Description

algo REQUIRED String The list of OIDs of the supported key algorithms. For example:

1.2.840.113549.1.1.1 = RSA encryption, 1.2.840.10045.4.3.2 =

ECDSA with SHA-256.

len REQUIRED

Conditional

Integer The length of the cryptographic key in bits. The value SHALL NOT be

used if keyAlgo is based on elliptic curve cryptography.

curve REQUIRED

Conditional

String The OID of the elliptic curve. The value SHALL only be used if

keyAlgo is based on elliptic curve cryptography.

8.2 x509PresentationResponse

The following are X.509 certificate-specific credential response parameters.

f

20

Parameter Presence Value Description

qes REQUIRED

Conditional

qesResponse The result of processing transaction data with a qesRequest using

the resulting credential. It MUST be included if and only if the

qesResponse is produced and if the qesRequest does not contain a

responseURI. If it does contain a responseURI, the response is

instead posted to this endpoint before returing the (empty)

credential presentation. The result SHALL contain qualified

electronic signatures or seals with the resulting credential as the

signer certificate.

Note 25: In OpenID4VP terms [i.5], approval of a qesRequest transaction using an X.509 certificate leads to a

Presentation. The Presentation is not a Verifiable Presentation, since no Cryptographic Holder Binding is

defined that protects against replaying the QES. That is, a QES can be replayed if the same DCQL query with

the same QES transaction_data is provided twice. In terms of electronic signatures and seals however, the

QES is cryptographically bound to the subject of the X.509 certificate. Applications can implement various

ways to protect against replay if needed, such as including an application-specific nonce (unrelated to the

OpenID4VP nonce) in the signer’s original document.

Note 26: When used with OpenID4VP [i.5], this binding specifies two options for receiving the qesResponse:

Inline option as a qes value in x509PresentationResponse.

Out-of-band option using responseURI. The x509PresentationResponse is returned without a qes

value.

Wallets can support either or both options, and it is up to the relying party to decide which option to

request. Each option has operational and information security considerations. With the inline option, the

relying party could leverage existing OpenID4VP and possibly Digital Credentials [i.14] infrastructure,

including its information security controls. However, in some cases such infrastructure is unable to handle

large documents with QES. With the out-of-band option, the relying party is more flexible in how it

processes the response. However, both the wallet and the relying party need to design and implement

appropriate security controls to maintain confidentiality of the qesResponse object. For example, the wallet

could limit its trust anchors to only accept a server connection with a qualified website authentication

certificate from within the same trust framework as the qualified certificate for QES.

8.2.1 DCQL query and presentation response examples for X.509 credential

A non-normative example DCQL query using the X.509 credential format is:

Note 27: The credential ID in DCQL is an opaque string defined by the creator of the query and unrelated to the

credential ID in the CSC API [i.3].

A non-normative example for a VP token in the response is:

{
 "credentials": [

 {
 "id": "xyz123",

 "format": "https://cloudsignatureconsortium.org/2025/x509",
 "meta": {

 "certificatePolicies": [
 "0.4.0.2042.1",

 "0.4.0.194112.1"
]

 }
 }

]
}

f

21

Note 28: Even if VP token is an OpenID4VP response, and in awareness that most data in OpenID4VP are using

base64url encoding, data objects introduced by this document (e.g. the documentWithSignature

representation) SHALL use base64 encoding (with padding), which is the common encoding in CSC context.

Another non-normative example for a VP token in the response, when the request includes a qesRequest with a

responseURI is:

Another non-normative example DCQL query using the X.509 format is:

Note 29: Even if the DCQL response in general is defined by OpenID4VP, and in awareness that most data in

OpenID4VP are using base64url encoding, data objects added to the response by this document

(e.g. certificateFingerprint) SHALL use base64 encoding (with padding), which is the common encoding in

CSC context.

{
 "xyz123": {

 "qes": {
 "documentWithSignature": [

 "<base64-encoded document 1 with signature>",
 "<base64-encoded document 2 with signature>"

]
 }

 }
}

{

 "xyz123": {}
}

{

 "credentials": [
 {

 "id": "abc234",
 "format": "https://cloudsignatureconsortium.org/2025/x509",

 "meta": {
 "certificateFingerprints": [

 {
 "hashValue": "Jal8JexCNec2FBjKNGNM6WSiiE44NWjbvJBHav+vCXU=",

 "hashAlgorithmOID": "2.16.840.1.101.3.4.2.1"
 },

 {
 "hashValue": "ax8xsy0gdqyJtxmcw8xgZ85DbiC905oKdYBQspddxmk=",

 "hashAlgorithmOID": "2.16.840.1.101.3.4.2.1"
 }

]
 }

 },
 {

 "id": "def345",
 "format": "https://cloudsignatureconsortium.org/2025/x509",

 "meta": {
 "keys": [

 {
 "algo": "1.2.840.10045.4.3.2",

 "curve": "1.2.840.10045.3.1.7"
 }

]
 }

 }
]

}

f

22

	Contents
	Foreword
	Revision history
	Acknowledgements
	Introduction
	Intellectual Property Rights
	Trademark notice
	Essential Patents
	Legal notices
	1 Scope
	2 Interpretation of requirement levels
	3 References
	3.1 Normative references
	3.2 Informative references

	4 Terms, definitions and abbreviations
	4.1 Terms and definitions
	4.2 Abbreviations
	4.3 JSON data types

	5 Conventions
	5.1 Text conventions

	6 Qualified electronic signature or seal request
	6.1 Binding to protocols using JWT
	6.1.1 signatureRequest for JWT
	6.1.1.1 Transaction data parameters

	6.1.2 Example application
	6.1.3 Security considerations

	6.2 Binding to OID4VC
	6.2.1 qesRequest
	6.2.1.1 Transaction data parameters
	6.2.1.2 Transaction authorization request example

	6.2.2 qesResponse
	6.2.3 Example application

	6.3 Transaction data processing
	6.4 Transaction data rendering

	7 Qualified electronic signature or seal approval
	7.1 qesApprovalRequest
	7.1.1 Transaction data parameters
	7.1.2 Transaction authorization request example

	7.2 qesApproval
	7.2.1 Transaction data binding to credential formats
	7.2.1.1 ISO/IEC 18013-5-compliant encoding
	7.2.1.2 SD-JWT VC-based encoding

	7.3 Example application

	8 X.509 certificate
	8.1 x509MetadataQuery
	8.1.1 keyInfo

	8.2 x509PresentationResponse
	8.2.1 DCQL query and presentation response examples for X.509 credential

