CLOUD
SIGNATURE
CONSORTIUM

CSC data model
bindings

Contents

Foreword
Revision history
Acknowledgements
Introduction
Intellectual Property Rights
Trademark notice
Essential Patents
Legal notices
1 Scope
2 Interpretation of requirement levels
3 References
3.1 Normative references
3.2 Informative references
4 Terms, definitions and abbreviations
4.1 Terms and definitions
4.2 Abbreviations
4.3 JSON data types
5 Conventions
5.1 Text conventions
6 Qualified electronic signature or seal request
6.1 Binding to protocols using JWT
6.1.1 signatureRequest for IWT
6.1.2 Example application
6.1.3 Security considerations
6.2 Binding to OID4VC
6.2.1 gesRequest
6.2.2 gesResponse
6.2.3 Example application
6.3 Transaction data processing
6.4 Transaction data rendering
7 Qualified electronic signature or seal approval
7.1 gesApprovalRequest
7.1.1 Transaction data parameters
7.1.2 Transaction authorization request example
7.2 gesApproval
7.2.1 Transaction data binding to credential formats
7.3 Example application
8 X.509 certificate
8.1 x509MetadataQuery
8.1.1 keyinfo
8.2 x509PresentationResponse
8.2.1 DCQL query and presentation response examples for X.509 credential

Foreword

This document is a work by members of the Cloud Signature Consortium, a nonprofit association founded by
industry and academic organizations for building upon existing knowledge of solutions, architectures and
protocols for Cloud-based Digital Signatures, also defined as “remote” Electronic Signatures.

The Cloud Signature Consortium has developed the present specification to make these solutions interoperable
and suitable for uniform adoption in the global market, in particular - but not exclusively - to meet the
requirements of:

» the European Union's Regulation 910/2014 on Electronic Identification and Trust Services (eIDAS) [i.1],
which formally took effect on 1 July 2016, amended by Regulation 2024/1183 on the European Digital
Identity Framework [i.2].

Revision history

Version Date Version change details

1.0.0 14/10/2025 Public release, based on data model pre-releases

Acknowledgements

This work is the result of the contributions of several individuals from the Technical Working Group of the Cloud
Signature Consortium and some additional contributors.

Introduction

This specification defines bindings of the CSC data model [9] to various protocols that relate to, but are not part
of, the CSC API. It is not mandatory to use these bindings together with the CSC API. They are examples of how
the data model can be used in various scenarios. The bindings in this specification may be taken as is, or adopted
for a particular use.

Intellectual Property Rights

The Intellectual Property Rights Policy (IPR Policy) of the Cloud Signature Consortium is available at
https://cloudsignatureconsortium.org/about-us/intellectual-property/.

Trademark notice

The Cloud Signature Consortium logo is a Registered Trademark of the Cloud Signature Consortium:
EU Trademark number 015579048.

Essential Patents

IPRs essential or potentially essential to the present document may have been declared to the Cloud Signature
Consortium. The information pertaining to these essential IPRs, if any, is available on request from the Cloud
Signature Consortium secretariat at info@cloudsignatureconsortium.org.

No investigation, including IPR searches, has been carried out by the Cloud Signature Consortium. No guarantee
can be given as to the existence of other IPRs not referenced in the present document which are, or may be, or
may become, essential to the present document.

Legal notices

The Cloud Signature Consortium seeks to promote and encourage broad and open industry adoption of its
standard.

https://cloudsignatureconsortium.org/about-us/intellectual-property/
mailto:info@cloudsignatureconsortium.org

©@®O

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA
4.0). To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

The present document does not create legal rights and does not imply that intellectual property rights are
transferred to the recipient or other third parties. The adoption of the specification contained herein does not
constitute any rights of affiliation or membership to the Cloud Signature Consortium VZW.

This document is provided “as is” and the Cloud Signature Consortium, its members and the individual
contributors, are not responsible for any errors or omissions.

The Trademark and Logo of the Cloud Signature Consortium are registered, and their use is reserved to the
members of the Cloud Signature Consortium VZW. Questions and comments on this document can be sent to
info@cloudsignatureconsortium.org.

1 Scope

This document describes bindings of the CSC data model[9] for use cases that are out of scope for CSC but may
be used in relation with the CSC API.

2 Interpretation of requirement levels

The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL", “SHALL NOT”, “SHOULD”", “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in RFC 2119 [1].

3 References

3.1 Normative references

The following documents, in whole or in part, are normatively referenced in this specification and are
indispensable for its application. For dated references, only the edition cited applies. For undated references
(regardless if a specific version is linked or not), the latest edition of the referenced document (including any
amendments or errata) applies.

[1] IETF REC 2119: “Key words for use in RFCs to Indicate Requirement Levels”.

[2] IETF RFC 4648: “The Basel16, Base32, and Baseé4 Data Encodings”.

[3] IETF REC 2397: “The ‘data’ URL scheme”.

[4] IETF RFC 6749: “The OAuth 2.0 Authorization Framework”.

[5] IETF REC 7515: “JSON Web Signature (JWS)".

http://creativecommons.org/licenses/by-sa/4.0/
mailto:info@cloudsignatureconsortium.org
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc4648
https://www.rfc-editor.org/rfc/rfc2397
https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc7515

[6] IETF RFC 8259: “The JavaScript Object Notation (JSON) Data Interchange Format”.

[7] IETF REC 9112: “HTTP/1.1".

[8] IETF REC 8610: “Concise Data Definition Language (CDDL): A Notational Convention to Express
Concise Binary Object Representation (CBOR) and JSON Data Structures”.

[9] Cloud Signature Consortium, “Data model for remote signature applications”.

[10] IETF REC 7519: “JSON Web Token (JWT)”.

[11] ETSI EN 319 102-1 “Electronic Signatures and Trust Infrastructures (ESI); Procedures for
Creation and Validation of AdES Digital Signatures; Part 1: Creation and Validation”.

3.2 Informative references

[i.1] Regulation (EU) No 910/2014 of the European Parliament and of the Council of 23 July 2014
on electronic identification and trust services for electronic transactions in the internal market and
repealing Directive 1999/93/EC.

[i.2] Regulation (EU) 2024/1183 of the European Parliament and of the Council of 11 April 2024
amending Regulation (EU) No 910/2014 as regards establishing the European Digital Identity
Framework.

[i.3] CSC Architectures and protocols for remote signature applications - version 2.

[i.4] IETF REC 9396: “OAuth 2.0 Rich Authorization Requests”.

[i.5] OpenlD for Verifiable Presentations, Version 1.0.

[i.6] OpenlID for Verifiable Credentials.

[i.7] IETF REC 3739: “Qualified Certificates Profile”.

[i.8] W3C Subresource Integrity, Recommendation 23 June 2016.

[i.9] ETSI TS 119 001: “Electronic Signatures and Infrastructures (ESI); The framework for
standardization of signatures; Definitions and abbreviations”.

[i.10] IETF RFEC 5280: “Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile”.

https://www.rfc-editor.org/rfc/rfc8259
https://www.rfc-editor.org/rfc/rfc9112
https://www.rfc-editor.org/rfc/rfc8610
https://www.rfc-editor.org/rfc/rfc8610
https://www.rfc-editor.org/rfc/rfc7519
https://www.etsi.org/deliver/etsi_en/319100_319199/31910201/01.04.01_60/en_31910201v010401p.pdf
https://www.etsi.org/deliver/etsi_en/319100_319199/31910201/01.04.01_60/en_31910201v010401p.pdf
https://eur-lex.europa.eu/eli/reg/2014/910/2024-10-18
https://eur-lex.europa.eu/eli/reg/2024/1183/oj
https://cloudsignatureconsortium.org/resources/download-api-specifications/
https://www.rfc-editor.org/rfc/rfc9396
https://openid.net/specs/openid-4-verifiable-presentations-1_0.html
https://openid.net/sg/openid4vc/specifications/
https://www.rfc-editor.org/rfc/rfc3739
https://www.w3.org/standards/history/sri-1/
https://www.etsi.org/deliver/etsi_tr/119000_119099/119001/01.02.01_60/tr_119001v010201p.pdf
https://www.etsi.org/deliver/etsi_tr/119000_119099/119001/01.02.01_60/tr_119001v010201p.pdf
https://www.rfc-editor.org/rfc/rfc5280
https://www.rfc-editor.org/rfc/rfc5280

[i.11] 1ISO/IEC 18013-5: “Personal identification — 1SO-compliant driving licence — Part 5: Mobile
driving licence (mDL) application”.

[i.12] draft-ietf-oauth-sd-jwt-vc-08: “SD-JWT-based Verifiable Credentials (SD-JWT VC)".

Note 1: The reference [i.12] will be updated with a final version before official publication.

[i.14] W3C Digital Credentials, Working Draft 10 July 2025.

4 Terms, definitions and abbreviations

4.1 Terms and definitions

For the purposes of this specification, the following terms and definitions apply.
authorization server: hereon abreviated as “AS”, server enabling users to authorize privileged operations.

Note 2: The AS is usually the endpoint described in CSC API [i.3] Section 8.4.

base64: Baseb4 as defined by RFC 4648 [2] Section 4, i.e. standard alphabet with padding SHALL be used. See
also paragraph about Base64 in Conventions section of this document.

baseé4url: Denotes the URL-safe Baseé4 encoding as defined in RFC 4648 [2] Section 5 and further precised in
RFC 7515 [5] Section 2 and Appendix C. Padding SHALL NOT be used.

digital signature: data appended to, or a cryptographic transformation of a data unit that allows a recipient of
the data unit to prove the source and integrity of the data unit and protect against forgery e.g. by the recipient
[i.9]

driving application: component that uses a signature creation application to sign a document as identified by
interacting with the relying party and/or signer.

electronic signature: digital signature created by using a certificate issued to a natural person ensuring the
integrity and origin of the document and the signatory commitment to the document content.

electronic seal: digital signature created by using a certificate issued to a legal person or business unit ensuring
the integrity and origin of the document, without necessarily committing to the content.

identity wallet: electronic means for identification or presentation of electronic attestations of attributes, for
example at an AS.

remote signing service provider: service provider managing a set of credentials on behalf of multiple users and
allowing them to create a remote signature with a stored credential.

signature: shorthand for electronic signature or electronic seal.

signature creation application: application that accepts signer’s original document and produces a signature or
signed document in accordance with AdES [11].

https://www.iso.org/standard/69084.html
https://www.iso.org/standard/69084.html
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-sd-jwt-vc-08
https://www.etsi.org/deliver/etsi_TS/119300_119399/119312/01.05.01_60/ts_119312v010501p.pdf
https://www.w3.org/TR/2025/WD-digital-credentials-20250710/

signer’s original document: some document types (e.g. PDF, XML, and JSON) require formatting before SDR can
be computed. signer’s original document is the original document before any formatting.

URL-encoded: encoded using the application/x-www-form-urlencoded format as defined in RFC 6749 [4]
Appendix B.

4.2 Abbreviations

This section lists abbreviations used in this specification.
AS: authorization server

DA: driving application

elDAS: Regulation (EU) No 910/2014 [i.1] with amendments of Regulation (EU) 2024/1183 [i.2]
0ID4VC OpenlD for Verifiable Credentials, see [i.6].
OpenlID4VP OpenlD for Verifiable Presentations, see [i.5].
QES Qualified Electronic Signature or Seal

RP: relying party

RSSP: remote signing service provider

SCA: signature creation application

SCD: signature creation device

ECTA: South African Electronic Communications and Transactions Act [i.15]

4.3 JSON data types

Unless otherwise specified, the following data types from JSON [6] are used.

Object: a JSON object

e Array: a homogeneous JSON array

e String: a JSON string

¢ Integer: a non-negative JSON number

5 Conventions

5.1 Text conventions

This specification adopts the following text conventions to help identify various types of information.

Table 1 - Text conventions

Text convention Example

The vertical bar (|) indicates a possible value for selection or outcome and YES | NO
SHALL be interpreted as “exclusive or”.

Text in colored boxes is example code.

POST /csc/v2/credentials/info
HTTP/1.1

Italic text indicates the name of a data component or data type. A documentinfo object contains a String parameter
named hash.
... the meta parameter in the credential query.

Inline code blocks are used for other code than names of a data component or The String value "public" or "OTP" can be used.
data type. ... aremotely hosted document or a data: URL ...
... by calling the signatures/signHash endpoint ...

In general, data types and data components defined in this specification use the “camelCase” notation, like the
data type documentinfo or the data component (parameter) authType. In case the name contains an
abbreviation, this abbreviation is written with uniform casing, like hashAlgorithmOID (“OID” in uppercase,
because it is not the first word) and gesRequest (“qges” in lowercase, because it is the first word).

However, names and parameters that are defined in other standards, like those in the domain of authentication
and related to OAuth, are used here in their original format to facilitate understanding and interoperability, using
“snake_case”, like refresh_token, i.e., two names separated by an underscore. This specification is self-contained
and in general does not refer to any external data types other than JSON data types. When this specification
refers to external data types, that reference is specified in the respective section. Therefore, no general
conventions are defined for external data types.

Whenever a data type is specified as an Object with particular parameters or attributes, instances with this type
can be referred to as “object” in lowercase. For example, a gesRequest object is an Object that conforms to the
requirements specified in the gesRequest section.

6 Qualified electronic signature or seal request

A QES is an advanced electronic signature or seal created using a qualified certificate as specified in RFC 3739
[i.7], bound to a qualified signature or seal creation device, as defined in the associated legal framework.

The signatureRequest data object from the data model[9] is used when a relying party requests that a signer
signs a document. The relying party must transfer the signatureRequest to the driving application. The driving
application may return the signed document as part of a direct interaction between the relying party and the
driving application. When there is no direct connection between the relying party and the driving application, the
driving application may upload the signed document to the responseURI specified in the signhatureRequest.

The transmission of the signatureRequest from the relying party to the driving application must be protected in
integrity and confidentiality and the driving application must be able to authenticate the relying party.

6.1 Binding to protocols using JWT

One way to transmit the signatureRequest is by transmitting a JWT[10]. This section does not require any specific
transport protocol for the JWT but gives a few examples. In some examples, the relying party posts the JWT to an
endpoint provided by the driving application. In other examples, the relying party transmits a URL to a location
where the JWT can be downloaded by the driving application. The relying party may, for instance, display a QR-
code encoding the URL of the JWT to the signer. The signer can then transmit the URL to the driving application.

6.1.1 signatureRequest for JWT

6.1.1.1 Transaction data parameters

Parameter Presence Value ‘ Description

iss OPTIONAL String Issuer as defined in [10]. iss MUST identify the relying party.

signatureRequests REQUIRED Array of An array of elements containing details about the requested signing
signatureRequest operation. All elements SHALL be of type signatureRequest with

documentReference as defined in [9]. The AS SHOULD use the label
element in the user consent to designate the document. Signature
applications that support this transaction data type MUST support
data: URLs [3] with base64 encoding in the href parameter. They
MAY restrict the supported media types and the acceptable body
length.

Note 3: The iss claim is included to allow the driving application to validate that the relying party is authorized to
request signatures. This specification does not define any method for validating the authorization of the
relying party. Implementors should create a profile of this binding that describes methods for validating
relying party authorization. Implementors may add additional claims (e.g. x5¢) to support the authorization
of the relying party.

6.1.2 Example application

In this non-normative example, the driving application is running on the device of the signer next to, or as part of,
an identity wallet.

The relying party prepares the following signatureRequest JWT header:

{
"alg": "ES384",
Iltypll 0 IIJWTII

3

and data:

{

"iss": "https://example.com",
"signatureRequests": [

"label": "Example Terms of Service",

"access": { "type": "public" },

"href": "https://example.com/terms-and-conditions.pdf",
"checksum": "sha256-HZQzZmMAIWekfGHO/ZKW1lnsdtOxg3H6bZYZztgsMTLWO=",
"signature_format": "P",

"conformance_level": "AdES-B-B",

"signed_envelope_property": "Certification",

"signatureQualifier": "eu_eidas_ges",

"responseURI": "https://example.com/signatureResponse/123/"

After signing, the resulting JWT may look like this:

eyJhbGci0iJFUzMUNCISINR5cCI6IKkpXVCJI9. eyIpc3MiOiJodHRwezovL2VAYWlwbGUuY29tIiwic
21nbmFOdXJLUMVxdWVzdHMiOlt7ImxhYmVsIjoiRXhhbXBsZSBUZXJtcyBvZiBTZXJ2aWN1IiwiYWN
jZXNzIjp7InR5cGUiOiIwdWIsaWMifSwiaHI1ZiI6Imh0dHBz0i8vZXhhbXBsZS5]jb20vdGVybXMtY
WSKLWNvbmRpdGlvbnMucGRmIiwiY2hlY2tzdW0i0iJzaGEyNTYtSFpRelptTUFJV2VrZkdIMC9aSlc
xbnNkdDBU4ZzNINmJIaWXp®Z3NNVEx3MDOiLCIzaWduYXR1lcmVFZmOybWFOIjoiUCIsImNvbmZvemlhb
mN1X2x1dmVsIjoiQWRFUy1CLUIiLCJzaWduZWRfZW52ZWxvcGVFfcHIveGVydHki0iIDZXJ0aWZpY2F
0aW9uIiwic21lnbmFOdXJILUXVhbGlmaWVyIjoiZXVFZWLKYXNfcWVzIiwicmVzcG9uc2VVUkkiOiJod
HRwczovL2V4YWlwbGUuY29tL3NpZ25hdHVyZVJlc3BvbnN1LzEyMy8ifV19. u2rHWHU4PdaCi561Uvt
B_GJImI-8KVFA7rud480HhOHRPtTUr2xvDHUuldpYogL8-MMTO5MaEBnfgYT1lcGAOlesc0J2CihQXXYt5
3gIlooUMmBSqHhYb7-1ZJh3fgo_fSuPb

The relying party makes the JWT available at a URL, e.g. https://example.com/signatureRequst/123/ and prepares
a QR-code that encodes the URL. The relying party shows the QR-code to the signer who scans the QR-code with
the driving application. The driving application downloads the JWT and validates that the issuer is authorized. If
the issuer is authorized, the driving application invokes the signature creation application with parameters from
the JWT.

6.1.3 Security considerations

e The JWT SHALL be signed.

¢ The signature algorithm used to sign the JWT SHOULD be an approved algorithm.

¢ The driving application SHALL validate the signature of the JWT.

¢ The driving application SHOULD validate that the issuer is authorized to request signatures.

6.2 Binding to OID4VC

6.2.1 gesRequest

The transaction data must be associated with a qualified certificate for creating a QES. This credential can be
identified by a field credential_ids specified below. One way to identify the credential is an x509MetadataQuery.

The transaction data type identifier for requesting QES is: "https://cloudsignatureconsortium.org/2025/qes".

6.2.1.1 Transaction data parameters

Parameter Presence Value ‘ Description
type REQUIRED String A data type identifier. MUST be
"https://cloudsignatureconsortium.org/2025/qes".
credential_ids REQUIRED Array of String References to credentials to approve a transaction with. MUST be
Conditional included if and only if the protocol for handling transaction data
requires it.
signatureRequests REQUIRED Array of An array of elements containing details about the requested signing
signatureRequest operation. All elements SHALL be of type signatureRequest with

documentReference as defined in [9]. The AS SHOULD use the label
element in the user consent to designate the document. Signature
applications that support this transaction data type MUST support
data: URLs [3] with baseé4 encoding in the href parameter. They
MAY restrict the supported media types and the acceptable body
length.

Note 4: The credential_ids data component is included for compatibility with OpenID4VP [i.5]. Typically, it refers
to dynamic local identifiers that are defined in a query. In contrast, credentiallD is a static credential
identifier defined at a remote signing service provider.

Note 5: Since gesRequest is used to request a QES, it is important to specify the applicable trust framework.

Therefore, in contrast to the CSC API [i.3] which requires the signatureQualifier to be present conditionally,
this binding always requires the signatureQualifier to be present.

10

Note 6: This transaction data type is likely to change in future versions of this document.

6.2.1.2 Transaction authorization request example

A non-normative example of a baseé4url-decoded OpenlD4VP [i.5] transaction_data string:

"type": "https://cloudsignatureconsortium.org/2025/qes",
"credential_ids": ["xyz123"],

"signatureQualifier": "eu_eidas_qges",
"signatureRequests": [

"label": "Example Contract",

"access": { "type": "OTP", "oneTimePassword": "51623" },

"href": "https://protected.rp.example/contract-01.pdf?
token=HS9naJKWwp901hBcK3U8IUHiuH83 74",

"checksum": "sha256-sTOgwOm+47U4gFj0qOx1iSNspKgbcseldIeiqlDg/HWuI=",

"signature_format": "P",

"conformance_level": "AdES-B-B",

"signed_envelope_property": "Certification",

"signAlgo": "1.2.840.113549.1.1.1"

"label": "Example Terms of Service",

"access": { "type": "public" },

"href": "https://public.rp-cdn.example/terms-and-conditions.pdf",
"checksum": "sha256-HZQzZmMAIWekfGHO/ZKWlnsdtOxg3H6bZYztgsMTLwWO=",
"signature_format": "P",

"conformance_level": "AdES-B-B",

"signed_envelope_property": "Certification",

"signAlgo": "1.2.840.113549.1.1.1"

"label": "Example Configuration",

"href": "data:application/json;base6d,eyJdleGFtcGx1S2V5IjoiZXhhbXBsZVZhbHV1InOK",
"signature_format": "J",

"conformance_level": "AdES-B-B",

"signed_envelope_property": "Attached",

"signAlgo": "1.2.8460.113549.1.1.1"

In this example, the credential identified by "xyz123" in the associated DCQL query will be used to sign the
provided documents, after obtaining them at the Signature Application.

Note 7: The credential ID in OpenID4VP [i.5] is an opaque string defined by the creator of the transaction data
and unrelated to the credential ID in the CSC API [i.3].

While transaction_data is defined by the OpenID4VP [i.5] specification and therefore baseé4url-encoding is
applied on the entire Object, for data structures within the object, which are defined by this document, the
encoding defined in this document SHALL be used (e.g. the included checksum data element follows the
definition of Common documentInfo parameters, it uses the Subresource Integrity [i.8] data format with base64-
encoded checksum and without padding).

For obtaining the first document, the Signature Application displays a one-time password to the user. When the
user enters the same one-time password in the Driving Application, the Driving Application unlocks the resource
at the URI for download. This mechanism addresses the risk of over-the-shoulder attacks in cross-device
scenarios.

11

6.2.2 gesResponse

In a QES transaction using an X.509 certificate, the private key corresponding to the public key identified in the
X.509 certificate is used to create the QES. The gesResponse object is composed of the following parameters:

Note 8: The below specification defines common response data that could be used in OpenID4VP responses
(e.g., VP token response or DCQL response). There is no requirement of specific encoding in OpenID4VP.
CSC is by intention, for consistency and compatibility with other data elements specified by CSC, defining
the below data elements with baseé4 encoding, and not baseé4url-encoded as in other elements defined
in OpenlD4VP.

Parameter Presence Value Description

documentWithSignature | REQUIRED Array of String One or more base64 encoded signatures enveloped within the
Conditional documents. MUST be included only if the OpenID4VP [i.5] request’s
transaction_data did not specify a responseURI AND if the format
of the signed data object implies the signature is embedded in the
document (use e.g., for PAJES signatures, or CAAES/XAdES
enveloped signatures).

sighatureObject REQUIRED Array of String One or more base64 encoded signatures that are detached from or
Conditional contain the signed data. MUST be included only if the request’s
transaction_data did not specify a responseURI AND if the format
of the signed data object implies the signature is not embedded in
the document (use e.g., for CAAES/XAdES detached or enveloping
signatures).

Note 9: In case of responseURI being specified in the transaction data, neither documentWithSignature nor
signatureObject will be contained in the gesResponse.

6.2.3 Example application

In the Wallet-centric model, a Relying Party requests a QES transaction from a Wallet (Driving Application) using
an X.509 credential:

{
"dcql_query": {
"credentials": [
{
"id": "abc234",
"format": "https://cloudsignatureconsortium.org/2025/x509",
"meta": {}
}
]
3,
"transaction_data": [
"ewogICAgInR5cGUi0iAiaHROCHM6LY9jbG91ZHNpZ25hdHVyZWNvbnNvenR. . . "
]
}

Note 10: As transaction_data relates to OpenlD4VP [i.5] specification, it is base64url-encoded (i.e. without
padding).

Note 11: The credential ID in DCQL is an opaque string defined by the creator of the query and unrelated to the
credential ID in the CSC API [i.3].

Here, the transaction_data contains a base64url-encoded Object in UTF-8 encoding:

12

"type": "https://cloudsignatureconsortium.org/2025/qes",
"credential_ids": ["abc23u"],

"signatureQualifier": "eu_eidas_qges",
"signatureRequests": [

"label": "Example Terms of Service",

"access": { "type": "public" },

"href": "https://public.rp-cdn.example/terms—-and-conditions.pdf",
"checksum": "sha256-HZQzZmMAIWekfGHO/ZKW1lnsdt®xg3H6bZYZztgsMTLWO="

"signature_format": "P",
"conformance_level": "AdES-B-B",
"signed_envelope_property": "Certification",

"signAlgo": "1.2.840.113549.1.1.1"

Note 12: While transaction_data is defined by OpenlD4VP specification and therefore baseé4url-encoding is
applied on the entire JSON, the data structure within the Object which is defined by this document use the
encoding defined in this document (e.g. the included checksum data element SHALL follow the
Subresource Integrity [i.8] data format with base64-encoded checksum and without padding).

After creating the QES, the Wallet responds with the QES:

"abc234": {
"ges": {
"documentWithSignature": [
"<base6ld-encoded document with signature>"

]

6.3 Transaction data processing

If the gesRequest is provided in the context of a credential that cannot be used to create a QES with the specified
signatureQualifier, the Signature Application MUST abort the transaction.

If a signatureRequest object contains both a href and a checksum value, the Signature Application MUST verify
resource integrity against the checksum and abort the transaction upon failure.

The Signature Application SHALL log the provided transaction data and the user’s decision to approve or reject
the transaction.

If the responseURI is provided and the QES is created, the Signature Application SHALL attempt to send the
response to the identified endpoint.

When sending the response to a responseURI with the https: URI scheme, the Signature Application SHALL use
HTTP/1.1 POST according to RFC 9112 [7] as follows.

HTTP POST request messages SHALL have the following structure:

POST <responseURI path> HTTP/1.1
Host <responseURI host>
Content-Length: <gesResponse length>
Content-Type: application/json

<gesResponse>

HTTP POST response messages, upon successful receipt, SHALL have the following structure:

13

HTTP/1.1 200 OK

Other request or response headers MAY be included.

The response endpoint SHOULD process only the first successfully received request.

6.4 Transaction data rendering

The Signature Application SHALL render the provided transaction data to the user upon authorization or upon
reviewing logs. The rendering can be visual, audible, or through other means in such a way that the user can be
expected to understand it. Some transaction data may only be fully rendered upon the user’s request, for
example, when requesting detailed inspection of the transaction data. The following rules apply to all fields
included in QES transaction data.

Parameter ‘ Rendering requirements

type The Signature Application SHALL always render a clear indication that the transaction creates a
QES, in such a way that the user can distinguish this from any other transactions performed using
the application.

signatureQualifier The Signature Application SHALL always render a clear indication of whether the QES is an
electronic signature or an electronic seal, The Signature Application SHALL render a clear
indication of the trust framework under which it is qualified.

signatureRequests.label The Signature Application SHALL always render the full label if specified. If unspecified, the
Signature Application SHALL clearly indicate that the document has no label.

signatureRequests.access If the type is "OTP", the Signature Application SHALL render the oneTimePassword value when
the user may need to enter it into the Driving Application to release access to the document
using the provided signatureRequestinfos/documentinfo/href value.

signatureRequests.href The Signature Application SHALL enable the user to load the document in an application that the
user has configured for the media type.

signatureRequests.checksum If the document is specified with href, the Signature Application SHALL indicate whether resource
integrity has been automatically verified or not.

signatureRequests.signed_props If specified, the Signature Application SHALL render the full set of attribute names and values to
the user. If the Signature Application recognises an attribute name and has a custom way of
rendering it that helps the user understand the consequences of the transaction, it MAY render
these attributes in a custom way. If the Signature Application does not recognise the attribute
name, it SHALL render the attribute value as-is.

signatureRequests.signature_format | If specified, the Signature Application SHALL enable the user to distinguish which signature
format is required in the transaction.

signatureRequests.conformance_level | If specified, the Signature Application SHALL enable the user to distinguish which conformance
level is required in the transaction.

responseURI The Signature Application SHALL enable the user to learn unambiguously which URI is used.

Note 13: If the transaction data contains href but the user chooses not to load the document, the Signature
Application may need to retrieve the document anyway later to be able to compute the data to be signed.
However, this retrieval can be done using streaming, while typically a user render requires storing the
whole document.

7 Qualified electronic signature or seal approval

This transaction data type lets the credential express the user’s approval for QES creation during an authorization
flow run by a server trusted by the provider that remotely manages the qualified signature or seal creation
device.

14

7.1 gesApprovalRequest

The transaction data type identifier for approving qualified electronic signatures or seals (QES) is:
"https://cloudsignatureconsortium.org/2025/qes-approval®. The transaction data must be associated with a
credential for approval of QES creation. This credential can be identified by a field credential_ids specified below.
One way to identify the credential is an x509MetadataQuery.

7.1.1 Transaction data parameters

The gesApprovalRequest object is the union of the following:

 signatureCreationApproval (see “Data model for remote signature applications” [9])
¢ The parameters in the table below

Parameter Presence Value ‘ Description

type REQUIRED String A data type identifier. MUST be
"https://cloudsignatureconsortium.org/2025/qes-
approval".

credential_ids REQUIRED Array of String References to credentials to approve a transaction with. MUST be

Conditional included if and only if the protocol for handling transaction data

requires it.

locations OPTIONAL Array of String The locations of remote signing service providers as defined in RFC

9396 [i.4].

Note 14: The credential_ids data component is included for compatibility with OpenlD4VP [i.5]. Typically, it refers
to dynamic local identifiers that are defined in a query. In contrast, credentiallD is a static credential
identifier defined at a remote signing service provider.

Note 15: While circumstantialData may not be part of transaction data, the transaction may be approved as part
of authorizing access to the signatures/signDoc CSC API [i.3] endpoint. The authorization details for that
request may need to include the circumstantialData. In general, while there is overlap between transaction
data and authorization details, these do not always need to contain the same values.

Note 16: This transaction data type is likely to change in future versions of this document.

7.1.2 Transaction authorization request example

A non-normative example of a base64url-decoded OpenlID4VP [i.5] transaction_data string:

15

"type": "https://cloudsignatureconsortium.org/2025/qes-approval",
"credential_ids": ["xyz123"],
"numSignatures": 2,

"signatureQualifier": "eu_eidas_qges",
"documentInfos": [
{

"label": "Example Contract",

"hash": "sTOgwOm+474gFj0qOx1iSNspKgbcseldIeiqlDg/HWuI=",

"hashType": "sodr",

"access": { "type": "OTP", "oneTimePassword": "51623" },

"href": "https://protected.rp.example/contract-01.pdf?token=HS9naJKWwp901hBcK3U48IUHiuH83 74",
"checksum": "sha256-sTOgwOm+47UgFjOqOx1iSNspKgbcselIeiqlDg/HWuI="

e
{
"label": "Example Terms of Service",
"hash": "HZQzZmMAIWekfGHO/ZKWlnsdtOxg3H6bZYztgsMTLwO=",
"hashType": "sodr",
"access": { "type": "public" },
"href": "https://public.rp-cdn.example/terms—and-conditions.pdf",
"checksum": "sha256-HZQzZmMAIWekfGHO/ZKWlnsdtOxg3H6bZYztgsMTLWO="
}l
{
"label": "Example Invoice",
"hash": "nL7zQmAKfQ2jADrOxkEZh2UqvdLxdWsmelSivP6LjoQ=",
"hashType": "sodr",
"access": { "type": "OTP", "oneTimePassword": "83920" },
"href": "https://protected.rp.example/invoice-2025-07.pdf?token=jkU47ns88sna9a",
"checksum": "sha256-nL7zQmAKfQ2jADrOxKEZh2UqV4LxdWsmelSivP6L joQ="
}

1,
"hashAlgorithmOID": "2.16.840.1.101.3.4.2.1"

In this example, the credential identified by "xyz123" in the associated DCQL query will be used to approve the
signature of the provided documents.

Note 17: The credential ID in OpenlID4VP [i.5] is an opaque string defined by the creator of the transaction data
and unrelated to the credential ID in the CSC API [i.3].

While transaction_data is defined by the OpenlID4VP [i.5] specification and therefore baseé4url-encoding is
applied on the entire Object, for data structures within the object, which are defined by this document, the
encoding defined in this document SHALL be used (e.g. the included checksum data element follows the
definition of Common documentInfo parameters, it uses the Subresource Integrity [i.8] data format with baseé4-
encoded checksum and without padding).

7.2 qesApproval

The result of approval is a single data component that binds the credential presentation to the transaction data.
The gesApproval is a String containing a base64 encoded hash digest of an encoded gesApprovalRequest. The
hash algorithm SHALL be identified using the hashAlgorithmOID parameter of the gesApprovalRequest. The
encoding used for the hash input SHALL preserve the UTF-8 encoded gesApprovalRequest as originally provided.
The encoding of the gesApprovalRequest in the gesApproval hash input SHALL depend on the format of the
credential using which the gesApproval is authenticated.

7.2.1 Transaction data binding to credential formats

Note 18: This section on binding QES transactions to other credentials is still being validated with experts and
can be changed in future versions of this document.

This section specifies the binding to two formats:

16

e ISO/IEC 18013-5-compliant encoding
e SD-JWT VC-based encoding

7.2.1.1 1SO/IEC 18013-5-compliant encoding

This section applies to QES transactions using credentials in 1ISO/IEC 18013-5 mdoc [i.11] format.
The gesApproval SHALL be protected in a DeviceSigned data structure.

Note 19: Since the gesApproval value is dynamic, it could not be signed by the issuer.

The gesApproval SHALL be identified using the NameSpace value "org.cloudsignatureconsortium.dm.1".
The gesApproval SHALL be identified using the DataElementldentifier value "qesApproval®.

The gesApproval SHALL be represented as a DataElementValue encoded as a CDDL [8] bstr value in CBOR,
containing the SHA-256 hash digest without Base64 encoding this digest.

The hash input to create gesApproval SHALL be the UTF-8 encoded gesApprovalRequest.

Note 20: If the gesApprovalRequest is provided with base64url encoding, such as in OpenID4VP [i.5], this means
that this value needs to be base64url decoded before hashing.

Note 21: An ISO/IEC 18013-5 mdoc needs to have explicit support to enable this application. In particular:

¢ The mdoc type, typically specified in a rulebook, needs to include the gesApproval attribute.
¢ The mdoc needs to be issued with a KeyAuthorizations object that includes:
e "org.cloudsignatureconsortium.dm.1" in AuthorizedNameSpaces;
e the mapping from "org.cloudsignatureconsortium.dm.1" to gesApproval in
AuthorizedDataElements.

7.2.1.2 SD-JWT VC-based encoding

This section applies to QES transactions using credentials in SD-JWT VC [i.12] format.
The gesApproval SHALL be protected in a Key Binding JWT included in the presentation of the SD-JWT VC.

The gesApproval SHALL be identified using the top-level claim key
"org.cloudsignatureconsortium.dm.1.qesApproval".

The gesApproval SHALL be represented as a String.
The hash input to create gesApproval SHALL be the baseé4url encoded UTF-8 encoded gesApprovalRequest.

Note 22: The SD-JWT VC standard does not specify the inclusion of additional top-level claims in the Key Binding
JWT. However, it is expected that wallets only return the
"org.cloudsignatureconsortium.dm.1.qesApproval” claim for credentials that are issued with the intention
to support the authorization of QES creation. This intention can, for example, be expressed in a rulebook
that specifies the SD-JWT VC type.

17

7.3 Example application

In the Provider-centric model, the AS is related to a trust service provider managing a remote QSCD. When
issuing a qualified certificate to a user, the trust service provider also issues a “service user attestation” as an
attestation of attributes in mdoc or SD-JWT VC format with gesApproval support. In this example, the attestation
has type "com.example.service.l.user" specified in a rulebook with the following attributes:

Namespace Attribute identifier Specification

"com.example.service.1" userName A CDDL [8] tstr identifying the user at the AS.
"com.example.service.1" credentiallD A CDDL [8] tstr identifying the credential at the AS.
"org.cloudsignatureconsortium.dm.1" qgesApproval Specified in gesApproval,

When authorizing the creation of a QES, the AS requests identification using this attestation, bound to QES
transaction data:

{
"deql_query": {
"credentials": [
{
"id": "qscd_service_attestation",
"format": "mso_mdoc",
"meta": {
"doctype_value": "com.example.service.l.attestation"
1
"claims": [
{ "path": ["com.example.service.1l", "userName"], "values": ["willeke"] 1},
{ "path": ["com.example.service.1l", "credentialID"], "values": ["GX01123u8"] 1},
{ "path": ["org.cloudsignatureconsortium.dm.1", "qesApproval"] }
]
}
1
i
"transaction_data": [
"ewogICAgInR5cGUi0iAiaHROCHM6LY9jbG91ZHNpZ25hdHVYZWNvbnNvenR. . . "
1
3

Note that the AS specifically asks for an attestation of the attribute credentiallD equal to Gxe1123u8, which
corresponds with an example credential managed in the remote QSCD for user willeke.

Here, the transaction_data contains a base64url-encoded Object in UTF-8 encoding:

{
"type": "https://cloudsignatureconsortium.org/2025/qes-approval",
"credential_ids": ["xyz123"],
"numSignatures": 2,
"signatureQualifier": "eu_eidas_qges",
"documentInfos": [
{
"label": "Example Terms of Service",
"hash": "sTOgwOm+474gFj0qOx1iSNspKgbcsedIeiqlDg/HWuI=",
"hashType": "dtbsr",
"access": { "type": "OTP", "oneTimePassword": "51623" },
"href": "https://protected.rp.example/contract-01.pdf?token=HS9naJKWwp901hBcK3U8IUHiuH83 74",
"checksum": "sha256-sTOgwOm+47UgFjOqOx1iSNspKgbcseldIeiqlDg/HWuI="
}
1,
"hashAlgorithmOID": "2.16.840.1.101.3.4.2.1"
}

After user authorization of the transaction towards their identity wallet, the identity wallet returns to the AS the
verifiable presentation of the service credential:

18

"abc123": ["<base6udurl-encoded DeviceResponse>"]

This DeviceResponse object in this example is a CBOR object matching the following CDDL [8]:

{
"version": "1.0",
"documents": [

"docType": "com.example.service.l.attestation",
"issuerSigned": {
"nameSpaces": {
"com.example.service.1": {
"userName": "willeke",
"credentialID": "GX01123u8"
}
i,
"issuerAuth": IssuerAuth ; from ISO/IEC 18013-5
}l
"deviceSigned": {
"nameSpaces": #6.2U(bstr .cbor {
"org.cloudsignatureconsortium.dm.1": {
"gesApproval": bstr .size 32 ; SHA-256 hash

1),
"deviceAuth": DeviceAuth ; from ISO/IEC 18013-5
}
}

] 1
"status": 0
}
After validating the presented attestation using the DeviceResponse, the AS is assured of the identity of the user
and the consent to authorize QES creation with the specified credentiallD and data to be signed. Subsequently,
the AS may proceed with any other needed steps to obtain an authorization grant from the resource owner.

Note 23: In this example, the DeviceResponse object identifies the user towards the AS, but not towards the
remote QSCD. Also, its DeviceAuth property can be verified only by the AS acting as an mdoc reader, and
not by other roles. Therefore, the DeviceResponse object is not signature activation data. The AS could rely
on the validation of the electronic attestation of attributes to create an identity assertion for use in the
signature activation data. Depending on the signature activation protocol, additional steps may include
cryptographically binding the credentiallD and the data to be signed to the signature activation data. The
specification of such steps is out of scope for this document.

8 X.509 certificate

This section specifies the X.509 credential formats for use in remote signature specifications. Credential formats
are applied in the OpenlD for Verifiable Credentials (OID4VC) series of standards [i.6]. These formats are
specified in addition to OpenID4VP [i.5] Appendix B.

The credential format identifier for X.509 certificates is: "https://cloudsignatureconsortium.org/2025/x509".

A request for proof of possession of an X.509 certificate MAY include transaction_data for creating electronic
signatures or seals using the queried certificate. A successful credential response includes the created electronic
signatures or seals.

Note 24: The transaction data type specifies which parameters are included and how these are processed. These
parameters represent signer’s original documents, signed properties, and processing rules. One applicable
transaction data type is specified under Qualified electronic signature or seal request. In OID4VC terms, the
result of creating an electronic signature or seal is a presentation of the X.509 certificate, bound to the
transaction data.

19

This section defines X.509 certificate-specific (DCQL) credential query and response types:

e x509MetadataQuery: Parameters in the meta parameter in the credential query.
e x509PresentationResponse: Attributes in the presentation response.

These types are specified according to the following sections. There are no parameters defined to query specific
claims in an X.509 certificate.

8.1 x509MetadataQuery

Parameter Presence Value ‘ Description

certificateFingerprints OPTIONAL Array of [hash] Definition of acceptable certificate fingerprints. Only hashing
algorithms as strong or stronger than SHA-256 SHALL be used. The
hash algorithm SHOULD follow the recommendations of ETSI TS
119 312 [i.13].

certificatePolicies OPTIONAL Array of String List of OIDs identifying applicable certificate policies. Default value:
[1.

keys OPTIONAL Array of keyInfo Allowed signing key configurations. If omitted, all signing key
configurations are allowed.

If the certificatePolicies are specified, the response SHALL only include a certificate that includes at least one of
the listed certificatePolicies.

If certificateFingerprints are specified, the response SHALL only include a certificate that matches one of the
listed fingerprints.

8.1.1 keyinfo

The keylInfo object is composed of the following parameters:
e algo
e len

® curve

specified according to the following table:

Parameter Presence Value Description

algo REQUIRED String The list of OIDs of the supported key algorithms. For example:
1.2.840.113549.1.1.1 = RSA encryption, 1.2.840.10045.4.3.2 =
ECDSA with SHA-256.

len REQUIRED Integer The length of the cryptographic key in bits. The value SHALL NOT be
Conditional used if keyAlgo is based on elliptic curve cryptography.

curve REQUIRED String The OID of the elliptic curve. The value SHALL only be used if
Conditional keyAlgo is based on elliptic curve cryptography.

8.2 x509PresentationResponse

The following are X.509 certificate-specific credential response parameters.

20

Parameter Presence Value H Description

qges REQUIRED gesResponse The result of processing transaction data with a gesRequest using
Conditional the resulting credential. It MUST be included if and only if the
gesResponse is produced and if the gesRequest does not contain a
responseURI. If it does contain a responseURI, the response is
instead posted to this endpoint before returing the (empty)
credential presentation. The result SHALL contain qualified
electronic signatures or seals with the resulting credential as the
signer certificate.

Note 25: In OpenID4VP terms [i.5], approval of a gesRequest transaction using an X.509 certificate leads to a
Presentation. The Presentation is not a Verifiable Presentation, since no Cryptographic Holder Binding is
defined that protects against replaying the QES. That is, a QES can be replayed if the same DCQL query with
the same QES transaction_data is provided twice. In terms of electronic signatures and seals however, the
QES is cryptographically bound to the subject of the X.509 certificate. Applications can implement various
ways to protect against replay if needed, such as including an application-specific nonce (unrelated to the
OpenlD4VP nonce) in the signer’s original document.

Note 26: When used with OpenID4VP [i.5], this binding specifies two options for receiving the gesResponse:

¢ Inline option as a ges value in x509PresentationResponse.
e Out-of-band option using responseURI. The x509PresentationResponse is returned without a ges
value.

Wallets can support either or both options, and it is up to the relying party to decide which option to
request. Each option has operational and information security considerations. With the inline option, the
relying party could leverage existing OpenlD4VP and possibly Digital Credentials [i.14] infrastructure,
including its information security controls. However, in some cases such infrastructure is unable to handle
large documents with QES. With the out-of-band option, the relying party is more flexible in how it
processes the response. However, both the wallet and the relying party need to design and implement
appropriate security controls to maintain confidentiality of the gesResponse object. For example, the wallet
could limit its trust anchors to only accept a server connection with a qualified website authentication
certificate from within the same trust framework as the qualified certificate for QES.

8.2.1 DCQL query and presentation response examples for X.509 credential

A non-normative example DCQL query using the X.509 credential format is:

{
"credentials": [
{
Ilidll: "Xy2123",
"format": "https://cloudsignatureconsortium.org/2025/x509",
"meta": {
"certificatePolicies": [
"0.4.0.2042.1",
"0.4.0.194112.1"
]
}
}
]
3

Note 27: The credential ID in DCQL is an opaque string defined by the creator of the query and unrelated to the
credential ID in the CSC API [i.3].

A non-normative example for a VP token in the response is:

21

"xyz123": {
"ges": {
"documentWithSignature": [
"<base6ld-encoded document 1 with signature>",
"<base6ud-encoded document 2 with signature>"

Note 28: Even if VP token is an OpenID4VP response, and in awareness that most data in OpenID4VP are using
baseé4url encoding, data objects introduced by this document (e.g. the documentWithSignature
representation) SHALL use base64 encoding (with padding), which is the common encoding in CSC context.

Another non-normative example for a VP token in the response, when the request includes a gesRequest with a
responseURl is:

"xyz123": {}

Another non-normative example DCQL query using the X.509 format is:

{
"credentials": [
{
"id": "abc234",
"format": "https://cloudsignatureconsortium.org/2025/x509",
"meta": {
"certificateFingerprints": [
{
"hashValue": "Jal8JexCNec2FBjKNGNM6WSiiE4UNWjbvJIBHav+vCXU=",
"hashAlgorithmOID": "2.16.840.1.101.3.4.2.1"
e
{
"hashValue": "ax8xsy0gdqyJtxmcw8xgZ85DbiC9050KdYBQspddxmk=",
"hashAlgorithmOID": "2.16.840.1.101.3.4.2.1"
3
]
}
1
{
"id": "def3u5",
"format": "https://cloudsignatureconsortium.org/2025/x509",
"meta": {
"keys": [
{
"algo": "1.2.840.16045.4.3.2",
"curve": "1.2.840.10045.3.1.7"
}
]
}
3
]
}

Note 29: Even if the DCQL response in general is defined by OpenID4VP, and in awareness that most data in
OpenlID4VP are using baseé4url encoding, data objects added to the response by this document
(e.g. certificateFingerprint) SHALL use base64 encoding (with padding), which is the common encoding in
CSC context.

22

	Contents
	Foreword
	Revision history
	Acknowledgements
	Introduction
	Intellectual Property Rights
	Trademark notice
	Essential Patents
	Legal notices
	1 Scope
	2 Interpretation of requirement levels
	3 References
	3.1 Normative references
	3.2 Informative references

	4 Terms, definitions and abbreviations
	4.1 Terms and definitions
	4.2 Abbreviations
	4.3 JSON data types

	5 Conventions
	5.1 Text conventions

	6 Qualified electronic signature or seal request
	6.1 Binding to protocols using JWT
	6.1.1 signatureRequest for JWT
	6.1.1.1 Transaction data parameters

	6.1.2 Example application
	6.1.3 Security considerations

	6.2 Binding to OID4VC
	6.2.1 qesRequest
	6.2.1.1 Transaction data parameters
	6.2.1.2 Transaction authorization request example

	6.2.2 qesResponse
	6.2.3 Example application

	6.3 Transaction data processing
	6.4 Transaction data rendering

	7 Qualified electronic signature or seal approval
	7.1 qesApprovalRequest
	7.1.1 Transaction data parameters
	7.1.2 Transaction authorization request example

	7.2 qesApproval
	7.2.1 Transaction data binding to credential formats
	7.2.1.1 ISO/IEC 18013-5-compliant encoding
	7.2.1.2 SD-JWT VC-based encoding

	7.3 Example application

	8 X.509 certificate
	8.1 x509MetadataQuery
	8.1.1 keyInfo

	8.2 x509PresentationResponse
	8.2.1 DCQL query and presentation response examples for X.509 credential

